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Background

By 2050 200,000-360,000 km of pipeline will be
required for transportation of CO, captured from

fossil fuel power plant for subsequent sequestration
(IEA, 2009).

IEA, Energy technology perspectives
2012: Pathways to a clean energy system. CO,QUEST 2



CO, pipeline transportation — hazards cont.
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Physics of decompression

Pressurised CO S O8B O(?C)O

Rupture
plane: 1 atm

« At the rupture plane the fluid is exposed to ambient air

« Following the rupture, the rarefaction wave starts propagating along the
pipe

« The vapour phase emerges in the expansion wave

* Due to rapid cooling of the fluid in the decompression wave, the solid
phase may also be released from the pipe



Homogeneous Equilibrium Model

Balance equations:
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where p, u, P, H and E are the density, velocity, pressure, total
enthalpy and total energy of a two-phase fluid mixture as function of

time t and space x.
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Thermodynamic eval

uation

Vapour phase

Two phase

Internal Energy

Liquid phase

Density

Robust evaluation of
thermodynamic models
usually only possible in this
direction

We would like to calculate
the pressure and
temperatures for our fluid
from the internal energy and
density
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Inverse interpolation grids
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This produces an ill distributed
grid of points in e-p points

...this region is so badly
covered that simulations are
Impossible

600 500 1000 200

Density (kg m—)

1400



Interpolation grids
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...together with a re-
distribution of points along
Isotherms gives an accurate
interpolation grid

Instead we use a sampling
which is heavier within the
phase envelope and
weighted towards phase
boundaries...
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Mixture compositions of interest

Input Parameter Binary mixture Quinternary mixture
H, - 1.15
Fluid Composition N, —4.04 O, —1.87
(% vol./vol.) CO, - 95.96 CH,-1.95
CO, — 91.03
Cosham, A. et al.. “The Decompression Behaviour of Carbon Dioxide in the Dense Phase.” In Proceedings of the 2012 9th 9

International Pipeline Conference, 447. Asme, 2012. doi:10.1115/IPC2012-90461.



Equation of State and accuracy

We apply the PC-SAFT (Perturbed Chain Statistical Associating
Fluid Theory) Equation of State.

Written as a summation of residual Helmholtz free energy terms
that occur due to different types of molecular interactions in the

system under study.

Ares (P T) ahs achain adfs p qassoc
—~ = - - -
NRT RT RT RT RT

% AAD between interpolation and EOS

Quinternary

Input Parameter Binary
Temperature 0.005 0.002
Pressure 0.44 0.07
Diamantonis, N. et al. “Evaluation of Cubic, SAFT, and PC-SAFT Equations of State for the Vapor—Liquid Equilibrium Modeling 10

of CO2 Mixtures with Other Gases.” Industrial & Engineering Chemistry Research 52, 10: 3933—-3942. do0i:10.1021/ie303248q.



Temperature errors
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Pressure errors

The (greatest error is

observed above the bubble
NnNint lina at \/qry IOW
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Fluid tests for stability — shock tubes

Pressure Pressure
Temperature Temperature
Velocity Velocity
Input Parameter P (bara) Temperature (K) Velocity (m s1)
Single-phase test
Left state 151 283.15 0
Right state 100 260.00 0
Two-phase test
Left state 151 283.15 0

Right state Pgewt? 260.00 0
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Single-phase shock tube test
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Two-phase shock tube test
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Decompression in CO, pipelines

Pipeline characteristics and fluid conditions

Parameter Value
Pipe internal diameter (m) 0.150
Pipe length (m) 144
Pipe wall roughness (mm) 0.005
Feed pressure (bara) 141
Feed temperature (K) 278.35
Cosham, A. et al.. “The Decompression Behaviour of Carbon Dioxide in the Dense Phase.” In Proceedings of the 2012 9th 16

International Pipeline Conference, 447. Asme, 2012. doi:10.1115/IPC2012-90461.



Quinternary mixture decompression
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Cosham, A. et al.. “The Decompression Behaviour of Carbon Dioxide in the Dense Phase.” In Proceedings of the 2012 9th 17

International Pipeline Conference, 447. Asme, 2012. doi:10.1115/IPC2012-90461.



Conclusions

» | showed the development and application of a robust interpolation method
for the prediction of thermodynamic properties and phase equilibria of
complex mixtures.

» Assessment of the method’s ability to reproduce the results of the EoS
showed, for the most part, an error no greater than 0.5 %.

» Large errors were observed only for the liquid phase at low temperatures,
where the physical model represented by the EoS is not applicable.

* Method was used in the simulation of flows containing CO, rich mixtures
and was found to be robust.

« Comparison of the predictions against experimental decompression data,

showed that the interpolation method produced robust and highly reliable
results for simple and complex mixtures.
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