

Techno-economic Analysis of CO₂ Quality Impact on CCS Chains

Charles Eickhoff PEL

Filip Neele TNO

- What is a Techno-economic analysis?
- How we have approached this in IMPACTS
- Use of cost functions outline
- Derivation of cost functions
- Examples of cost function results
- TE Model overview
- Techno-economic trade-offs in CCS chains
- Absolute Limits (Red Lines)

A Techno-economic Analysis is usually performed to provide insight into cost-benefit decisions about projects and involves two basic elements:

- The technical requirements to achieve a defined outcome
- The economic changes that this implies

These two elements can be combined into a standard project financial model with the capability to:

- model the technical issues
- vary the assumptions to look for optimal solutions

MPAC

7

IMPACTS Project Data Flows

Use of Cost Functions - outline

CONFIDENTIAL

Example: Reducing water content using methanol drying

Capex

Opex

H₂O ppmm

2000

250

10

H ₂ O ppmm	CF (€m)
2000	0
250	0
249	10
200	10
199	20
150	20
149	30
100	30
99	40
50	40
49	50
10	50

CF (€m/a)

0

0

2.4

50 40 30 20 10 0 50 100 150 200 250 300 Water content ppmm

Capex CF (€m)

Capex is a series of steps of €10m per100ppmm

while the Opex is a smooth linear relationship with decreasing ppmm.

Example: Using Stainless Steel to avoid corrosion

Capex is a single step change in cast due to more expensive material.

In this case a factor is used so as to be able to apply it to the calculated material cost of the chosen pipeline

Water content ppmm

Influence of changing purity: Cost Function

Blue line shows cost of increasing purity at source

Red line shows changing downstream T&S costs with changing ppm

Optimum position is at minimum total cost (450ppm here)

Derivation of Cost Functions - examples

CONFIDENTIAL

What are the key impacts on cost of capture in an IGCC (Capex and Opex) when:

- tightening the specification
- relaxing the specification

from the standard Benchmark plant? Expressed as % change to allow for re-sizing.

Capex	800)€m			
Орех	2 1	l€m/a			
Refinement					
Impurity	Δ ppm	Capex %	Opex %	Process	
H₂O	<250	5	0	Methanol wash	
N ₂	<2%	1	2	Use CO ₂ lock hoppers	
O ₂	<10	1.5	1	Liquid scavenger (and methanol)	
Ar	<200	2.5	2	Refine ASU separation level	
H₂S, H₂	<100	5	1	Refine the DMEPEG wash	
CH_4, C_2+, NH_3	<500	0	0	Use entrained flow gasifier	
Cl-	<5	0	1	NaOH wash	
Relaxation					
Impurity	Δ ppm	Capex %	Opex %	Process	
N ₂ , Ar	>250	-2.5	-2.5	Cheaper ASU design	
IDACTS		CONFIDENTIAL			

Pure CO₂ has interesting characteristics:

Variation in density with N2 content

Data from TREND 2.0 Developed by RUB for the IMPACTS project

So an approximation for the density of the mixture can be derived as follows:

 $\rho = 938-1360N+0.72(P-100)-6(T-280)$

where N is the N2 fractional content P is the pressure in bar T is the temperature in K

Variation in Bubble Point with Impurities

Need to raise chain pressure to avoid two-phase flow (around 8bar)

IMPACTS T-E Model

CONFIDENTIAL

The Techno-Economic Model is

- Designed to be flexible to allow different chains to be modelled
- Built in Excel to be user-friendly
- Using a data table to flex impurity level from designated capture plant
- Providing user-specifiable economic measures
- Kept as simple as possible where standard

Set-up of Benchmark Chains

MPACTS Tool v0.2 Component Module Coordination Sheet								
			6	100	100	100	10	11
Components in use	Capture	3	6	10	11			
	Transport	1	Chain Component	s				
	Storage	2	1	2	3	4	5	6
Use pull-down menu type and name to	Тур	e of module	Capture	Transport	Storage	Storage	Capture	Capture
attach the required component sheets	Work	sheet name	Capture 1	Transport 1	Storage 1	Storage 1	Capture 2	Capture 3
	Comp	onent name	Pre-Combustion	Pipeline	Oil Field	Oil Field 2	Post-Combustion	Post-Combustion
Chain Structure		Group	1	2	3	3	1	1
	Chain Con	nection type	Join	Series	Branch	Branch	Join	Join

Overview of Connections

IMPACTS Tool v0.4	Logic Module	Connectior	ns		
Connection Diagram	This sheet provides a visual repr				
	Components Group 1	Connections	Components Group 2	Connections	Components Group 3
Group Type	Join		Series		Branch
			Pineline 1		Oil Field 1
			ripenne i		Official
	Amine PC 1				Oil Field 2
	Animerer				
	Amine PC 2				
	Annue re z				

CONFIDENTIAL

Capture Module input

Capture Impurity Spec	ification	Uses User	Input or D	ata Table from Main					
Overall CO2 purity	99.6%					Fill in all h	oves mark	ed vellow	
	Used		User Inpu	t					
Impurity	ppmm				wer Station Parameters			1	
H2O	100		100		ctrical	output MW	gross	460	MW
N2	2000		2000		-site Lo	bads	_	116.4	MW
02	100		100		ctrical output MW net		344	MW	
Ar	20		20		t overall efficiency		31%	%	
NOx	100		100		el Type			Coal	
SOx	100		100		el calorific value (LHV)		26600	MJ/kg	
CO	20		20		el Carbon content			66.9%	%
H2S	100		100		2 captu	ire rate		91.7%	%
H2	50		50		2 prod	uced		337.4	t/h
CH4	500		500		-			3.0	Mt/a
C2+	1000		1000		ailability (typical)		87.5%		
Cl	5		5		tput Pressure MSL		210	bar	
NH3	50		50		mpression load		80.7	MW	
					1				

Model Components contain cost function influences:

Tables of Cost Functions

0 7

Source and nature of flexing	Impurity Ela	
can be set by user	Vary the o	con
		Ca

€M/a/ppm

4.24

0.21

42.44

Variants:

	-							
ina	Impurity E	Elasticity ca	lculations					
	Vary the c	ompositio	n from					
		Capture 1	Capture 2	Capture 3	Capture 4			
		TRUE	FALSE	FALSE	FALSE	FALSE		
		Data Table	e used here	e for variat	ion of the r	measure ag	gainst ppm	า
	€/t	to be com	pleted					
Graph	base	20	50	100	250	350	1000	ppm
	95.71	95.87	95.81	95.71	95.42	95.42	102.35	
		1000	1000	5000	10000	20000	50000	ppm
1	95.71	95.68	95.68	95.83	96.03	96.46	99.34	
		3	10	20	100	500	1000	ppm
	95.71	95.86	95.71	95.71	95.71	95.72	95.72	

Tabular and graphical output as defined by user in addition to standard project cash flows and returns

Base

ppm Capture 1

100

2000

10

H2O

N2

02

€/t/ppm

0.96

0.05

9.57

Effect of Nitrogen on Multi-stage Compression Efficiency

Empirical formula derived from multiple runs of TREND2 and ProMax: 0.5% change in energy consumption per 1% N₂ content Applied to Capture module and hence energy usage in CCS chain Graph created using model flex facility

Effect of Nitrogen on CCS chain storage capacity with depth

The effect of Nitrogen in the CO₂ CCS stream

- as an inert impurity displacing marginal CO₂: cost quite low at depth
- at lower depth the Nitrogen forms two-phases and hence reduced capacity

Effect of Nitrogen & Water reduction on Pre-combustion Capture costs

Allowing a higher level of nitrogen allows for a cheaper ASU Further tightening of the specification requires use of CO_2 in lock-hoppers

Step change at 250ppmm with introduction of methanol drying Increasing opex costs to get moisture level down further

Add the Pre-combustion plant to a long pipeline (Case C)

Step change at 350ppmm H_2O with switch to stainless steel pipe Increase below 250ppmm from introduction of methanol drying Hence optimal range of 250 – 350 ppmm

"Bathtub" is more balanced with a short onshore pipeline (Case B)

Lower overall costs makes ppm reduction relatively more costly Additional pipeline costs much smaller

Risk Limits

CONFIDENTIAL

Commercial TE analysis also needs to be tempered by any Fatal Flaws or Red Lines arising from impurities.

May be in the form of :

- Increased risk to structural integrity
- Heightened risks to human health
- Increased possibilities of environmental damage

Any such limits need to be overlaid on the economic analysis

Limit of 350ppmm H_2O is not a red line as there is the expensive option of a stainless steel pipeline

Limit of 250ppmm for hydrate formation can be an operational red line as pipeline could become blocked under some conditions

For the IMPACTS project, it has been assumed that an accident will give rise to a concentration of 10% CO₂ in air, and that breathing increases up to six times normal (84 breaths/minute).

Even when the multiplier of x6 is applied equivalent figures for impurities, the effect of inhaling the CO_2 will far outweigh the proposed range of impurity levels e.g. for H₂S at 30 mins:

SLOT in Air	Max Impacts	at 10%	x6
500 ppm	200	20	120

Safe Limit of Toxicity (UK HSE)

(CO₂ 30min SLOT 62,000 ppm)

Hence the conclusion is that the CO_2 will be more toxic than any of the impurities (including combinations) at the levels considered by IMPACTS

Thank you for your attention

CONFIDENTIAL

CONFIDENTIAL

Example: Overall capacity of Aquifer storage by depth Effect of adding additional N_2 , O_2 to mixture

Data from TNO using REFPROP

CONFIDENTIAL