Experimental speed of sound in CO₂-rich mixtures with methanol. Extrapolation to pure CO₂

C. Rivas, B. Gimeno, M. Artal, S. T. Blanco, J. Fernández*, I. Velasco

Department of Physical Chemistry, Faculty of Sciences, University of Zaragoza, Spain

*Presenting author's email: javierf@unizar.es

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

High pressure speed of sound apparatus

Double-path double-echo pulsed ultrasonic system 253 K - 473 K u(T)=0.015 K 0.1 MPa - 200 MPa u(P)=0.02 MPa

Frequency: 5 MHz

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

At 5 MHz

Pure CO₂ \rightarrow no signal

 CO_2 -rich mixtures of interest for CCS, \rightarrow poor or no signal

C. W. Lin, PhD Thesis, 2013 Pure CO₂: No signal at <u>2 MHz</u> Partial success at <u>0.5 MHz</u>

C.W. Lin, PhD Thesis, 2013 C.W. Lin and J.P.M. Trusler, 2014, J. Chem. Eng. Data, 59, 4099-4109 Doping CO₂ with small amounts of propane at <u>2 MHz</u> Good signals Successful extrapolation to pure CO₂

3

∠araqoza

At 5 MHz

 CO_2 + propane is opaque for x_{CO_2} >0.8 (approx.)

2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

In our study CO₂+SO₂

We hoped

 SO_2 itself could act as doping agent in the CO_2+SO_2 mixtures

BUT

It only works at $x_{CO_2} \le 0.9$ At $x_{CO_2} = 0.95$: very poor signals along very short ranges of pressure and only at low temperatures

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

LOOKING FOR A SUITABLE DOPING AGENT

Methanol

- reduces significantly the sound absorption coefficient of the mixture
- works well until $x_{CO_2} \approx 0.99$ in a $CO_2 + CH_3OH$ mixture
- can appear in the CCS facilities

✓ impurity in anthropogenic CO₂

- ✓ used to avoid hydrates formation
- \checkmark a residue from pipeline drying

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

Experimental speed of sound in CO₂-rich mixtures with methanol. Extrapolation to pure CO₂

Aim of this work

To test the suitability of methanol as doping agent, in order to obtain good measurements of speed of sound in CO_2 at 5 MHz and, in the future, in CO_2 rich mixtures of interest for CCS.

To evaluate the doping effect.

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

Experimental speed of sound in CO₂-rich mixtures with methanol. Extrapolation to pure CO₂

For this purpose

- We measured the speed of sound in seven CO₂-rich mixtures with methanol at several *P* and *T* and at 5 MHz
- We obtained extrapolated values of c in pure CO₂
- We evaluated the effect of the doping on *c* by comparing our results with the Span and Wagner EoS
- We used the experimental results for the mixtures to validate the PC-SAFT and the GERG EoSs

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

Measuring of the speed of sound, c, in seven mixtures CO_2+CH_3OH

*At 263.15 K, Rivas, C., Gimeno, B., Bravo, R., Artal, M., Fernández, J., Blanco, S.T., Velasco, I., 2nd International Forum on Recent Developments of CCS Implementation, Athens 2015.

niversidad

∠araɑoza

8

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

With the experimental results of the five most concentrated mixtures

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

10 🛄

The experimental results of each isotherm an isopleth were fitted to a polinomial:

$$(P - P^{\#}) = a_1(c - c^{\#})^1 + a_2(c - c^{\#})^2 + a_3(c - c^{\#})^3$$
 (1)
 $P^{\#} = 70 \text{ MPa}; c^{\#} = c \text{ at } P^{\#}$

Coefficients of the equation 1 for the mixture $CO_2 + CH_3OH$ with $x_{CO_2} = 0.9503$ at temperatures *T*, and mean relative deviations.

x _{CO2}	T/K	$10 imes a_1$ MPa.m ⁻¹ .s	$10^4 imes a_2$ MPa.m ⁻² .s ²	$10^8 imes a_3$ MPa.m ⁻³ .s ³	MRD _c %
	263.15	2.5039	2.543	7.33	0.019
0.9503	298.15	2.1649	2.271	7.40	0.012
	323.15	2.0001	2.127	7.10	0.004

 $MRD_{c}(\%) = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{c_{i,fit} - c_{i}}{c_{i}} \right|$ 11 Zaragoza

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015 From the polynomials (1), we obtained values of c at round values of P at each T and at each composition

These values of c, at each T and at each round P, for the five studied compositions, were fitted to

$$c_{0} \text{ is the speed of sound at a given T and at a given round value of P for } c_{0} = 1$$

$$c_{0} \text{ is the speed of sound at a given T and T and T and T and P at T and P Average overall uncertainty 0.12% (2)$$

That way, we obtained the extrapolated speeds of sound in pure CO₂ at each given T and round P

12

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

a

Derived c in pure CO₂: comparison with the literature and the S-W EoS

Reference	Type of data	<i>MRD_c</i> (%)		
Pitevskaya and Bilevich, 1973	Direct experimental	0.61%*		
Al-Siyabi, 2013	Direct experimental	Consistent**		
Lin, 2014	Direct experimental at 0.5 MHz	0.44%*		
Lin and Trusler, 2014	Derived with propane at 2 MHz	0.21%*		
Span and Wagner, 1996	Equation of state	0.43%*		
Tolerance margin of the S-W EoS0.5%-2%				
*At the common temperat **Temperatures were diffe	erent $MRD_c(\%) = \frac{1}{2}$	$\frac{00}{N} \sum_{i=1}^{N} \left \frac{c_{i,lit} - c_i}{c_i} \right $		

The deviations are higher than the uncertainty of our c in pure CO₂, (0.12%), but lower than the tolerance margin of the Span and Wagner EoS

Speed of sound, c, in pure CO₂ versus pressure, P.

14

m

Zaragoza

Speed of sound, c, in pure CO₂ versus temperature, T.

15___

m

Zaragoza

Relative deviations of c in pure CO₂ from the Span and Wagner EoS

Wagner EoS

The deviations are higher than the experimental uncertainty (0.059%), but they are almost always inside the tolerance margin of the Span and Wagner EoS (0.5-2%)

COMPARISON WITH EoSs

OUR EXPERIMENTAL SPEEDS OF SOUND FOR ALL THE CO_2 +CH₃OH MIXTURES

PC-SAFT AND GERG EoSs

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

Zaragoza

PC-SAFT EoS applied to CO₂+CH₃OH

 $\widetilde{a} = \widetilde{a}^{id} + \widetilde{a}^{hc} + \widetilde{a}^{dis} + \widetilde{a}^{assoc} + \left(\widetilde{a}^{QQ} + \widetilde{a}^{DD} + \widetilde{a}^{QD}\right)$

- For pure compounds m; σ; and ε calculated from the pure compounds' critical temperatures and pressures (Gil et al., 2012)*.
- The mixing parameters σ_{ij} and ε_{ij} :

$$\sigma_{ij} = \frac{1}{2} (\sigma_i + \sigma_j) \qquad \varepsilon_{ij} = \sqrt{\varepsilon_i \varepsilon_j} (1 - k_{ij})$$
$$k_{ij} = -0.323 + 2.88 \times 10^{-4} T$$

iversidad

(*) Gil, L. et al., 2012. The Journal of Supercritical Fluids, 71, 26-44.

Thermodynamic properties of a CO₂-rich mixture CO₂+CH₃OH in conditions of interest for CCS technology and other applications 2nd International Forum on Recent Developments of CCS Implementation

PC-SAFT EoS applied to CO₂+methanol

self-association compound non-self-association CO

INDUCED ASSOCIATION*:

Methanol

- The association volume, $\kappa^{A_iB_i} = \kappa^{methanol}$, and the association energy, $\varepsilon^{A_iB_i} = 0$ for CO₂ with a 2C association scheme.
- The association volume, $\kappa^{A_iB_i}$, and the association energy, $\varepsilon^{A_iB_i}$ for methanol with a 2B association scheme.
- The cross-association parameters, $\kappa^{A_iB_j} = \kappa^{methanol}$, and $\epsilon^{A_iB_j} = \kappa^{methanol}$ $\kappa^{methanol}/2.$

(*) Kleiner, M., Sadowski, G., 2007. The Journal of Physical Chemistry C, 111, 15544-15553.

Thermodynamic properties of a CO₂-rich mixture CO₂+CH₃OH in conditions of interest versidad for CCS technology and other applications 20 2nd International Forum on Recent Developments of CCS Implementation

GERG EoS applied to CO₂+CH₃OH

$$\widetilde{a} = \widetilde{a}^{id} + \widetilde{a}^{res} = \sum_{i=1}^{N} x_i [\widetilde{a}_i^{id} + \ln x_i] + \sum_{i=1}^{N} x_i \widetilde{a}_i^{res} + \Delta \widetilde{a}^{res}$$

 Although methanol is not one of the 21 compounds included in the Kunz and Wagner article (Kunz and Wagner, 2012), it has been implemented in the used REFPROP 9 software.

(*) Kunz, O., Wagner, W., 2012. The Journal of Chemical & Engineering Data, 57, 3032-3091.

	MRD _c	(%)	$MRD_{c}(\%)$		$MRD_{c}(\%)$	
	T = 263	. 15 K	<i>T</i> = 298.15 К		T = 323.15 K	
$x_{\rm CO_2}$	PC-SAFT	GERG	PC-SAFT	GERG	PC-SAFT	GERG
0.8005	2.12	11.7	2.09	12.9	2.16	11.0
0.9025	2.56	7.12	1.60	7.65	1.57	6.49
0.9503	2.82	4.95	2.05	4.23	1.55	3.16
0.9700	3.08	3.62	2.61	2.29	2.56	1.40
0.9794	3.98	2.15	3.22	1.34	2.95	0.86
0.9845	4.32	1.55	3.66	0.85	3.09	0.74
0.9898	5.01	0.80	3.86	0.64	3.15	0.65

	MRD _c (%)			
	PC-SAFT	GERG		10
overall	2.83	4.97		$MRD_c(\%) = -\frac{1}{N}$
x _{CO₂} ≥0.98	3.69	1.06		

$$MRD_{c}(\%) = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{c_{i,\text{EoS}} - c_{i}}{c_{i}} \right|$$

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

Athens, 16-17 December 2015

CONCLUSIONS

Acoustic measurements are needed for CCS

<u>Great difficulties</u> to determine the speed of sound in pure CO_2 and in CO_2 -rich mixtures at high pressures.

<u>Doping with methanol</u> \Rightarrow good measures of *c* in CO₂ at 5 MHz

The <u>effect</u> of the doping has been <u>quantified</u>.

The PC-SAFT and GERG EoS have been validated with the exception of GERG for the methanol-richest mixtures.

NEXT STEP

To extend this method to opaque CO₂-rich mixtures of interest for CCS technology.

Speeds of sound in CO₂ + SO₂ mixtures doping with 0.8% of methanol $x_{SO_2} = 0.103$ with methanol Without methanol doped undoped 0.8888 x_{CO_2} = *x*solvent⁼ 0.8968 $x_{\rm CO_2}$ = 0.8969 0.0080 xCH₃OH = $x_{SO_2} = 0.1031$ 0.1032 $x_{SO_2} =$ $u_c = 0.09\%$ $u_c = 0.06\%$ 0.20% at 263.15 K Differences (MRD_c) $\overline{MRD_c} = 0.16\%$ 0.14% at 293.15 K doped-undoped 0.15% at 353.15 K

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

27

Universidad Zaragoza

GERG: REFPROP 9

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

PC-SAFT: Binary mixture

Parameter	Reference			
CO ₂	Gross-Sadowski, 2001			
SO ₂	Gross-Sadowski, 2001			
k_{ij} (CO ₂ -SO ₂)= 0.03	Diamantonis, 2013			

PCSAFT: Ternary mixture

Parameter	Reference
CO ₂ (ASSO.2C)	Gil et al., 2012
SO ₂	Gross-Sadowski, 2001
CH₃OH (ASSO.2B)	Gil et al., 2012
k_{ij} (CO ₂ -SO ₂)= 0.03	Diamantonis, 2013
$k_{ij}(\text{CO}_2 - \text{CH}_3\text{OH}) = -0.323 + 2.88 \times 10^{-4} T$	Gil et al., 2012
$k_{ij}(\mathrm{SO}_2 - \mathrm{CH}_3\mathrm{OH}) = 0$	
2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015	29 Zaragoza

COMPARISON	EX EX	P. UNDC P. DOPE	Ded	PC-SA GERG	AFT (<i>T</i> = 29 35	263.15 K, 93.15 K, 53.15 K)	
MRD _c (%)		EoS	undoped CO ₂ (0.896	<u>mixture</u> 59) +	$\frac{\text{doped mixture}}{\text{CO}_2(0.8888) +}$		
EXPERIMENTAL			30 ₂ (0.103))	$CH_3OH(0.080)$		
$\frac{\text{undoped mixtur}}{CO_2(0.8969) +}$ SO_2(0.1031)	<u>re</u>		PC-SAFT GERG	2.20% 1.77%	PC-SAFT GERG	4.30% 1.58%	
$\frac{\text{doped mixture}}{CO_2(0.8888) +} \\ SO_2(0.1032) + \\ CH_3OH(0.080)$			PC-SAFT GERG	2.44% 1.23%	PC-SAFT GERG	3.72% 1.26%	

Experime 2nd Inte Athens, $MRD_{c}(\%) = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{c_{i,\text{EoS}} - c_{i}}{c_{i}} \right|$

nethanol. implementation

30

m

Universidad Zaragoza

CONCLUSION

The effect of methanol in the speed of sound values is quite small for the experiments and negligible for modelling

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

31

versidad

Javier Fernández
Department of Physical Chemistry
University of Zaragoza
Spain
javierf@unizar.es

Thank you for your attention

Acknowledgment: The research leading to these results has received funding from Ministry of Economy and Competitiveness of Spain ENE2013-44336-R and from Government of Aragon and the European Social Fund

Experimental speed of sound in CO₂-rich mixtures with methanol. 2nd International Forum on Recent Developments of CCS Implementation Athens, 16-17 December 2015

Universidad Zaragoza