

On simulation of dynamic brittle fracture of CO2 pipeline using coupled fluid–structure modelling approach

<u>Reza Hojjati¹*</u>, Solomon Brown², Sergey Martynov², Haroun Mahgerefteh²

> ¹ArcelorMittal Global R&D Gent-OCAS N.V. ²University College London

- CCS is the third most important measure to limit the global warming by 2°C [IEA]
 - An important part of the CCS chain is the transport of CO₂

Taken from wiki.iploca.com

Outline

Outline

Introduction

• Material selection for safe CO₂ transportation

Developing ductile and *brittle fracture* models

Coupling fluid/structure fracture model for predicting ductile and brittle fracture behaviour

Effects of different stream impurities on brittle fracture behaviour of CO2 pipeline

Brittle Fracture

Thermal stresses

Charpy V-Notch (CVN)

Drop Weight Tear Test (DWTT)

DWTT Set-up

Fractography

Pipeline flow model (CFD)

Pressure [MPa]

Fracture propagation model (XFEM)

XFEM-based cohesive segment

Crack initiation

$$f = \left\{ \frac{\langle \sigma_{max} \rangle}{T_{max}} \right\}$$

Crack Propagation

$$D = \int_{0}^{\delta_{max}} \frac{T_{max}}{\Gamma} d\delta$$

CVN model

Displacement [mm]

0.4

0.6

0.2

2

0

0

DWTT model

Crack speed

Nishioka and Atluri (1982)

 $\alpha = a/W$

 $\beta = S/W$

$$C_1(\alpha) = \frac{\sqrt{\alpha}}{\sqrt[2]{(1-\alpha)^3}(1+3\alpha)} (1.9+0.41\alpha^2 - 0.17\alpha^3)$$

$$C_2(\alpha) = 0.76 - 2.28\alpha + 3.87\alpha^2 - 2.04\alpha^3 + (0.6/(1-\alpha)^2)$$

 $\dot{a} \text{ [m/s]}$ 10³ 10³ $\dot{a} = c_1 ln \left(\frac{K_{ID}}{\sigma_y \sqrt{a}}\right) + c_2$ 10² $\dot{a} = c_1 ln \left(\frac{K_{ID}}{\sigma_y \sqrt{a}}\right) + c_2$ $\frac{K_{ID}}{\sigma_y \sqrt{\pi a}} \text{ [-]}$

Coupled fluid/structure model

Verification

ArcelorMittal CO2QUEST

$$\dot{a} = 0.67 \frac{\sigma_f}{\sqrt{J_{DWTT}/A_p}} \left(P/P_a - 1\right)^{0.393}$$

Makino et al., 2001

$$P_{a} = 0.382 \frac{\delta_{t}}{D} \times \sigma_{f} \times \cos^{-1} \left(exp \left(-\frac{3.81 \times 10^{7}}{\sqrt{D\delta_{t}}} \times \frac{J_{DWTT}/A_{P}}{\sigma_{f}^{2}} \right) \right)$$

 $J_{DWTT} = 3.29 \delta_t^{1.5} C_V^{0.544}$

Acknowledgements and Disclaimer

The research leading to the results described in this presentation has received funding from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102.

The presentation reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained therein.

