

2nd International Forum on Recent Developments of CCS Implementation

Athens, December 16-17th 2015

Development of a Novel Experimental Apparatus for Hydrate Equilibrium Measurements

Panagiotis Kastanidis¹, George E. Romanos¹, Vasileios K. Michalis², Ioannis G. Economou², Athanassios K. Stubos³, and Ioannis N. Tsimpanogiannis^{2,3,*}

¹ Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15310 Aghia Paraskevi Attikis, Greece,

²Chemical Engineering Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar,

³ Environmental Research Laboratory, National Center for Scientific Research "Demokritos", 15310 Aghia Paraskevi Attikis, Greece

Hydrate Background

- Self-assembled, crystalline structures.
- Formed by water molecules creating a solid lattice that encages "guest" molecules.
- Structures are only stable at high pressures, low temperatures, and in the presence of guest molecules.
- More than 130 different molecules form hydrates (e.g., CH₄, CO₂, H₂, hydrocarbons, Ar, Kr, N₂, O₂ etc.).

Pentagonal

Dodecahedron

Tetrakaidecahedron

e.g. CH₄, CO₂

CO₂QUEST

Blocking pipe-lines

LANL modification of figure in: *Nature*, **414**, 353 (2001).

Oceanic slope collapsing Danger to oil platforms

4'E

Gas Storage and Transport

Utilize the hydrate capability to incorporate large amount of gases in the solid structure.

- Transport stranded CH₄ gas.
- Transport gas into slurries.
- Store Hydrogen.
- Store CO₂ in CO₂hydrate pellets.

Complete reversibility, easy recovery process, fast kinetics, moderate temperatures, nontoxicity, low flammability, H₂O as by-product.

CO₂QUEST

Significant Potential in Future Applications !!!

Experimental Apparatus

- Measure the pressure (P) and temperature (T) conditions during threephase (H–L_w–V or H–L_w–L_g) equilibria of pure gases
- Perform quantitative analysis of the liquid phase (i.e., solubility measurements) that is under three-phase (H–L_w–V or H–L_w–L_g) equilibrium conditions

TS

The impact of the quality of CO, on transport and storage behavio

TEXAS A&M

Thermostated Air Bath

CO₂QUEST

Notation Used

- PV : Pressure Vessel
- PT : Pressure Transducer
- TC : Thermo Couple
- PRC: Pressure Relief Cell
- ACF: Air Circulating Fan
- SL1: Gas Sampling Loop
- SL2: Liquid Sampling Loop
- CM: Cooling Mantle
- MS: Magnetic Stirrer
- TF : Thermal Fluid
- C : Camera
- H : Heater

- 1. Preparation manifold
- 2. Thermostated air cabinet
- 3. PVT cell
- 4. Pressure relief cell for liquid sampling
- 5. Electronics and monitoring
- 6. Julabo temperature control system
- 7. Gas chromatograph

Three-phase (H– L_w –V or H– L_w – L_g) equilibrium measurements

- Isochoric Pressure Search (IPS) Method
 - Cell filled with liquid H₂O and gas at a temperature and pressure that correspond to VLE region and kept closed - volume is kept constant.
 - Isochoric Cooling through consecutive temperature and subsequent pressure drops
 - Metastability limit achieved Hydrate formation takes place, indicated by a sharp pressure drop
 - Hydrate formation is completed the intense pressure drop stops
 - Isochoric heating through consecutive temperature and subsequent pressure increases until hydrate dissociation is completed
 - The hydrate equilibrium point is taken as the point in a pressure-temperature plot, where the dissociation (heating) trace intersects the cooling trace.

Three-phase (H– L_w –V or H– L_w – L_g) equilibrium measurements

- The Phase Boundary Dissociation (PDB) Method.
 - A modification to the IPS method
 - When a hydrate system contains excess amount of free H₂O the system contains all three phases (H–L_w–V) throughout the duration of the experiment.
 - At pure hydrate formers (i.e., systems with 3 phases), two components exist in the system (i.e., guest and H₂O)
 - according to the Gibbs Phase rule, there is one degree of freedom (i.e., a single value of pressure at any given temperature)
 - Such a system would dissociate along the H-L_w-V phase boundary for as long as all three phases coexist

Three-phase (H– L_w –V or H– L_w – L_g) equilibrium measurements

- The Phase Boundary Dissociation (PDB) Method.
 - The cell is filled with 40:1 molar ratio of H₂O to the guest gas, so excess H₂O is always present and left to equilibrate
 - The temperature is set to 273.25 K for 6 h, to form hydrates and allow the system to reach equilibrium.
 - The system is heated in steps of 0.5 K for 4 h before the next temperature step is taken and a data point recorded, to prevent metastability.
 - This process is continued until the hydrate is fully dissociated and the equilibrium point could be taken, as confirmed by a sharp change in dP/dT.
 - Each data point is treated the same as the data recorded from a single IPS method experiment.

Solubility Calculation

Equilibrium Pressure

T= Cabinet Temperature

System at Equilibrium point

Expansion to pressure relief cell

-

Solubility Equations

$$V_{gas} = \left[\frac{(P - P_g) \cdot (V - V_{H_2O})}{z \cdot R \cdot T} + \frac{\rho \cdot V_{H_2O}}{\frac{18.015}{1000}} \cdot \left(\frac{moles_{gas}}{moles_{H_2O}}\right)\right] \cdot \tilde{v}_{gas}$$
$$n_{gas} = \frac{(P - P_g) \cdot (V - V_{H_2O})}{z \cdot R \cdot T} + \frac{\rho \cdot V_{H_2O}}{\frac{18.015}{1000}} \cdot \left(\frac{moles_{gas}}{moles_{H_2O}}\right)$$

$$x_{gas} = \frac{n_{gas}}{n_{H_20} + n_{gas}}$$

CSMGem

The Colorado School of Mines Clathrate Prediction Program

- CSMGem can calculate multiphase equilibria at any given temperature and pressure using an algorithm based on Gibbs energy minimization.
- O CSMGem is tailored specifically to the hydrocarbon industry
- **O** Phase equilibria can be calculated for the following conditions:
 - O Incipient hydrate formation temperature at a fixed pressure
 - O Incipient hydrate formation pressure at a fixed temperature
 - **O** Fixed temperature and pressure
 - Fixed temperature and specified phase fraction (i.e., dew and bubble points)
 - Fixed pressure and specified phase fraction (i.e., dew and bubble points)
 - O Expansion through a valve (i.e., fixed pressure and enthalpy)
 - Expansion through a turboexpander (i.e., fixed pressure and entropy)
- CSMGem can also plot phase boundaries when used in conjunction with MS Excel

		нер			
←→ Units	Incipient Hydrate Formation Hydrate Formation P given T Hydrate Formation T given P T = 9594 C	CSMGem Hydrate Predict (c) Colorado School o 19/3/2015 2:23:33 ìì	ion Program f Mines 2001		
omponents <u>Fe</u> ed	P = 43.15 atm	Hydrate Formation T at P Temperature = 9.594 Celsius Pressure = 43.150 atm Number of Phases Present : 3 Stable Convergence			
		Molar Composition of Phases Present			
Incipient <u>H</u> ydrate <u>F</u> lash	Calculate	Carbon Dioxide Water	Aqueous 0.028595 0.971405	Vapor 0.999524 0.000476	sI Hydrate 0.136090 0.863910
<u>x</u> pansions	Incipient Hydrate Structure	Phase Fraction	0.876868	0.123132	0.000000
<u>P</u> lot	Phases Present				

Results

- Gas hydrate systems examined
 - Carbon dioxide water
 - Methane water
- Initial Experimental Conditions
 - Pressure range 2.5 8.5 MPa
 - Temperature range ~ 283 K

ĂM

TEXAS A&M

Time evolution of the pressure and temperature of an experiment

'he impact of the quality of CO, on transport and storage beha

CO₂QUEST

Pressure vs. Temperature diagram showing the cooling and heating cycles for two characteristic experiments for the CO₂ – H₂O system

CO₂QUEST

A M

TEXAS A&M

NATIONAL CENTER

RESEARCH "DEMOKRITOS"

FOR SCIENTIFIC

CO₂QUEST

Ā M

TEXAS A&M

NATIONAL CENTER

FOR SCIENTIFIC

system CO₂ – H₂O

Reported values for the upper quadruple point of CO₂ + H₂O

Case	P (MPa)	Т (К)	Reference
A	4.502	283.1	Unruh and Katz
В	4.468	283.3	Robinson and Metha
С	4.650	283.1	Fan and Guo
D	4.480	283.27	Mooijer-van den Heuvel et al.
Е	4.510	282.924	CSMGem
F	4.57 ± 0.03	282.9 ± 0.2	This work

Pressure vs. Temperature at three-phase equilibrium conditions for the system $CH_4 - H_2O$

CO₂QUEST

Ă M

TEXAS A&M

NATIONAL CENTER

RESEARCH "DEMOKRITOS"

FOR SCIENTIFIC

Solubility of CO₂ in H₂O under three-phase (H–L_w–V or H–L_w–L_{CO2}) equilibrium conditions, as a function of pressure

A M

TEXAS A&M

Solubility of CH_4 in H_2O under three-phase (H–L_w–V) equilibrium

conditions, as a function of temperature

Carbon Dioxide Clathrate formed

TEXAS A&M

IMPACTS

The impact of the quality of CO, on transport and storage behav

Equilibrium point

CO₂QUEST

Gas Carbon Dioxide

Liquid Carbon Dioxide

Conclusions

- A novel experimental apparatus was designed and constructed for measuring the three-phase equilibrium conditions of pure gas and gas mixture hydrates
- Equilibrium points for carbon dioxide water and methane water systems were obtained, using existing experimental conditions alongside new, not reported yet
- The upper quadruple point was calculated with sufficient accuracy
- The solubility of the gas in the aqueous phase was measured under three-phase equilibrium conditions

Acknowledgements

This work was funded by NPRP grant number 6–1547–2–632 from the Qatar National Research fund (a member of the Qatar Foundation).

This work is submitted to

Fluid Phase Equilibria

"Development of a Novel Experimental Apparatus for Hydrate Equilibrium Measurements"

P. Kastanidis, G.E. Romanos, V.K. Michalis, I.G. Economou, A.K. Stubos, I.N. Tsimpanogiannis,