EFFECTS OF SO₂ CO-INJECTION ON CO₂ STORAGE

KOENEN, M.*, WALDMANN, S., HOFSTEE, C. AND NEELE, F.

innovation for life

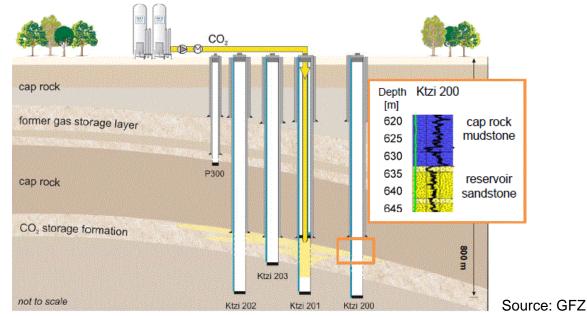
MARIELLE.KOENEN@TNO.NL

innovation

RATIONALE IMPACTS PROJECT

- Investigate relation between impurities and design / performance of CCS chain
 Because:
 - Impurities in the CO₂ stream are costly and energy-intensive to remove but
 - Adapting the transport and storage infrastructure to handle impurities can also be expensive
- Provide knowledge base for defining maximum tolerable impurities

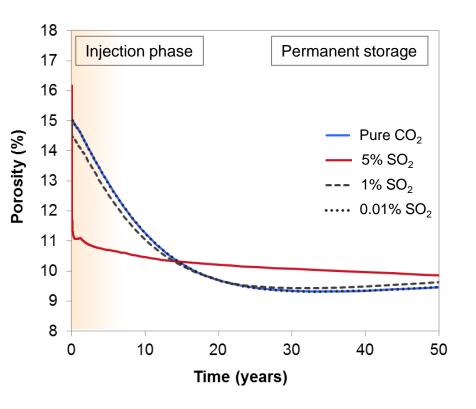
INTRODUCTION


- From geochemical point of view SO₂ is one of the most important impurities for storage
- Aim:
- Investigate whether SO₂ co-injection on CO₂ storage is positive or negative for:
 - > Injectivity and storage capacity: porosity changes in reservoir during injection phase
 - > Sealing integrity: long-term reactivity of caprock and wellbore cement
- Consider potential additional costs to allow SO₂ in the CO₂ stream
- > Tool: Geochemical modelling with *PHREEQC*

• Saline aquifer structure at relatively shallow depth (P - 8 MPa; T - 33°C)

soort and storage behaviou

- Sandstone reservoir and shale caprock
- Wellbore Portland cement
- Consistent with experimental study in project: 5% co-injection of SO₂

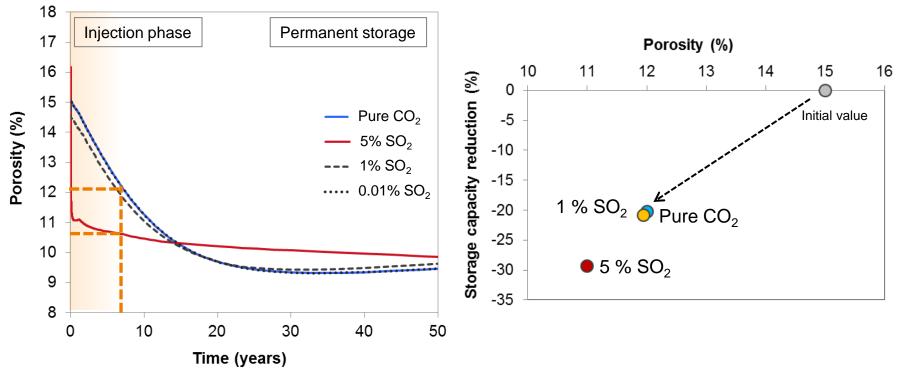


4 2nd CCS Forum, Athens, Greece | December 17th 2015 | Koenen et al.

innovation

for life

IMPACT OF SO₂ ON INJECTIVITY SHORT-TERM POROSITY CHANGES IN RESERVOIR


- > Kinetic batch model
- Fluid-rock interactions with time
- Corresponding porosity changes

Results

- > At 5% SO₂ (compared to pure CO₂):
- Large pH reduction
- Faster mineral reactions
- Faster porosity reduction
- At realistic SO₂ concentrations, porosity evolution similar to pure CO₂

IMPACT OF SO₂ ON STORAGE CAPACITY SHORT-TERM POROSITY CHANGES IN RESERVOIR

- > Porosity changes during injection phase could affect volume for CO₂ storage
- > Example: porosity reduction after 7 years of injection

Large capacity reductions: 20-30%

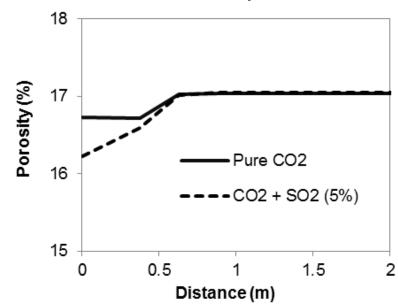
6 2nd CCS Forum, Athens, Greece | December 17th 2015 | Koenen et al.

IMPLICATIONS FOR CO₂ STORAGE

Injectivity and storage capacity

- Fluid-rock interactions caused by the injection of (impure) CO₂ affect porosity
- Regardless of SO₂
- Potential injectivity issues and reduction of storage capacity
- At high SO₂ concentrations injectivity issues and storage capacity reduction could be enhanced
- \checkmark At realistic SO₂ concentrations, these effects are negligible

novation



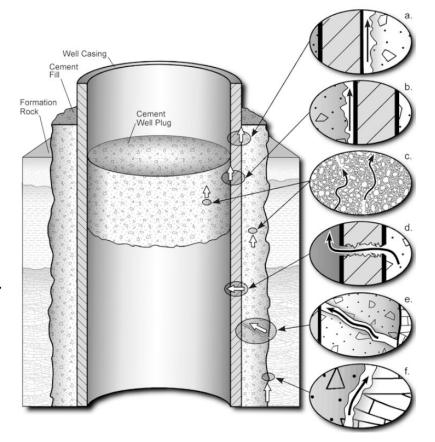
IMPACT OF SO₂ ON SEALING INTEGRITY CAPROCK

- > 1D reactive transport model:
- Diffusion of dissolved CO₂ and SO₂ into the caprock
- Fluid-rock interactions with time as a function of distance from reservoir
- Corresponding porosity changes

Results

- Mineral reactions similar to reservoir
- After 200 years, only bottom few decimeters affected
- Enhanced porosity decrease

After 200 years

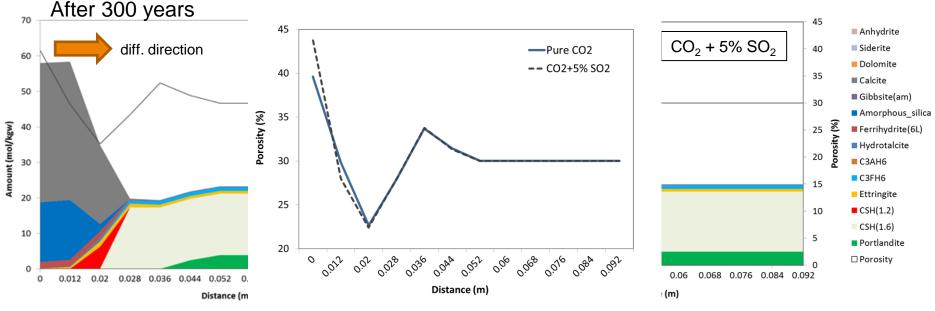

IMPLICATIONS FOR CO₂ STORAGE

- Long-term caprock integrity
- Porosity decrease is favorable for sealing
- Sealing integrity is enhanced by the presence of SO₂

TNO innovation for life

IMPACT OF SO₂ ON SEALING INTEGRITY WELLBORE CEMENT

- > Annular cement is primary seal
- > 1D reactive transport model:
- Diffusion of dissolved CO₂ and SO₂ into the cement
- Fluid-rock interactions with time as a function of distance from reservoir
- Corresponding porosity changes


From Gasda et al. (2004)

IMPACT OF SO₂ ON SEALING INTEGRITY WELLBORE CEMENT

Results

- Cement minerals unstable in acid environment
- Complete alteration of mineralogy; various reaction zones
- Inward progression of zones with continuous diffusion of dissolved CO₂ and SO₂
- Additional effect of SO₂ negligible, even at high concentrations

11 2nd CCS Forum, Athens, Greece | December 17th 2015 | Koenen et al.

IMPLICATIONS FOR CO₂ STORAGE

- Long-term cement sealing integrity
- Wellbore cement integrity deteriorates in the presence of CO₂
- Regardless of the presence of high concentrations of SO₂
- Wellbore sealing by annular cement could be a serious issue
- Options: additional leakage monitoring, innovative abandonment procedures or use of different materials

CONCLUSIONS

- > High levels of SO_2 (5%) in the CO_2 stream can:
- cause (additional) injectivity issues
- increase reduction of storage capacity
- slightly enhance deterioration of wellbore cement
- > Caprock sealing issues are not expected

> BUT!

- > At SO₂ concentrations < 1% the effects are very similar to a pure CO₂ stream
- No additional effects, and hence costs, are expected if SO₂ remains in the CO₂ stream!

THANK YOU FOR YOUR ATTENTION

innovation for life