# Vapour-liquid Equilibrium Data of Carbon Dioxide and Oxygen\*

Sigurd Weidemann Løvseth SINTEF Energy Research

#### Important contributors:







GHJ Stang

SF Westman

A Austegard LS

I Snustad

\*Submitted to Fluid Phase Equilibria by Westman et al.





**SINTEF Energy Research** 

## Influence of impurities on VLE

# Water and corrosion?



Løvseth SW, Skaugen G, Jacob Stang HG, Jakobsen JP et al.. Energy Procedia 2013;37:2888-96.





### All IMPACTS and CO2Quest people know that

- Impurities in CO<sub>2</sub> will be present in CCS
- The impurities could have large consequences
- Accurate and reliable models are required



### Well behaved models and correlations for CCS

- Are easiest built with accurate data that are
  - on binary mixtures
  - w/ concentration ranges beyond the expected

## But there are a lot of data, right?





### **VLE Binary Data Situation**

- Systems relevant for natural gas covered with some gaps
  - CO<sub>2</sub> N<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub>O, H<sub>2</sub>
- Scarce / inconsistent,
  - CO<sub>2</sub> O<sub>2</sub>, CO, Ar, NO<sub>x</sub>, - H<sub>2</sub>S
- No / little /very old data,
  - CO<sub>2</sub> COS, SO<sub>2</sub>, many amines, trace comp
  - Most relevant mix. w/o CO<sub>2</sub>



#### PVTxy properties of CO<sub>2</sub> mixtures relevant for CO<sub>2</sub> capture, transport and storage: Review of available experimental data and theoretical models

Hailong Li<sup>a,b,\*</sup>, Jana P. Jakobsen<sup>a</sup>, Øivind Wilhelmsen<sup>a</sup>, Jinyue Yan<sup>b,c</sup>

<sup>a</sup> SINTEF Energy, Kolbjørn Hejes vei 1A, 7465 Trondheim, Norway <sup>b</sup> Energy Process, Royal Institute of Technology, 10044 Stockholm, Sweden <sup>c</sup> School of Sustainable Development of Society and Technology, Målardalen University, Västerås, Sweden

| A R T I C L E I N F O<br>Article history:<br>Received 29 October 2010<br>Received in revised form 8 March 2011 |  | A B S T R A C T<br>The knowledge about pressure-volume-temperature-composition (PVTxy) properties plays an impor-<br>tant role in the design and operation of many processes involved in CO <sub>2</sub> capture and storage (CCS) sys- |    |
|----------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                |  |                                                                                                                                                                                                                                         |    |
|                                                                                                                |  | J. Chem. Thermodynamics                                                                                                                                                                                                                 |    |
| ELSEVIER                                                                                                       |  | journal homepage: www.elsevier.com/locate/jct                                                                                                                                                                                           | JJ |

EOS-CG: A Helmholtz energy mixture model for humid gases and CCS mixtures

Johannes Gernert<sup>1</sup>, Roland Span\*

Thermodynamics, Ruhr-Universität Bochum, D-44801 Bochum, Germany

Dissertation zur Ertangung des Grades Doktor-Ingenieur

### Munkejord et al., subm. Applied Energy





### **VLE Binary Data Situation**

- Systems relevant for natural gas covered with some gaps
  - $CO_2 N_2, CH_4, H_2O, H_2$

ant mix.  $w/o CO_2$ 

- Scarce / inconsistent
  - $-CO_2 O_2, -CO_2, -'$  $-H_2S$
- No / littlr - (^



EOS-CG: A Helmholtz energy mixture model for humid gases and CCS

Dissertation 7.01 Erlangung des Grades Doktor-Ingenieur

5

### Munkejord et al., subm. Applied Energy





# CO<sub>2</sub>Mix and IMPACTS

- CO<sub>2</sub>Mix
  - Late 2010 -2015
  - BIGCCS spin-off and funded by the CLIMIT/ Research Council of Norway
  - WP A: Experimental investigation of phase equilibria
    - SINTEF Energy Research and NTNU
    - Advanced experimental infrastructure established
  - WP B: Measurement of density and speed of sound
    - Headed by Prof. R. Span, Ruhr-University Bochum
- 2015 co-funding of VLE by CO<sub>2</sub>Mix and IMPACTS
  - Analysis and documentation of CO<sub>2</sub>-N<sub>2</sub> measurements
  - Measurements of CO<sub>2</sub>-O<sub>2</sub> and CO<sub>2</sub>-Ar









### Phase Equlibrium Measurements: Basics

- Analytical method
  - Composition measurements of all fluid phases
  - Sampling and gas chromatograph (GC)
  - Total composition not critical for binary systems
- Temperature
  - Range: -60 to 150 °C
  - Combined accuracy, stability and uniformity of <5-10 mK</li>
- Pressure:
  - Range: 4 to 200 bar
  - Accuracy better than 0.10 % (mostly <0.03 %)</li>

Stang HGJ, et al., Energy Proc., 2013. **37**: p. 2897. Westman SF, et al., Fluid Phase Equilib., 2016. **409**: p. 207.







## Cell Design

- Volume 0.1 l
- Sapphire Tube / Titanium Flanges
- Separate valves and pumps for:
  - CO<sub>2</sub>
  - Water

**()** SINTEF

- Other components / calibration mixture
- N<sub>2</sub> (flushing)
- Pressure measured using 4 sensors
  & differential pressure cell
- 25 Ω standard platinum resistance thermometers (SPRT / PT)
- Temperature control using thermostatic baths

Stang HGJ, et al., Energy Proc., 2013. **37**: p. 2897. Westman SF, et al., Fluid Phase Equilib., 2016. **409**: p. 207.







## Analysis and Sampling

- Sampling volumes down to 3  $\mu$ g
  - Fixed for gas phase
  - Movable for liquid phase
  - Heated lines
- Pressure cell compensation using bellows
- Gas Chromatograph
  - Agilent 7890A
  - Detection:
    - Flame ionization detector (FID) w/ methanizer
    - Thermal conductivity detector (TCD)
    - Flame-ionization detectors (FPD)

Stang HGJ, et al., Energy Proc., 2013. **37**: p. 2897. Westman SF, et al., Fluid Phase Equilib., 2016. **409**: p. 207.







## **GC** Calibration

- Accuracy  $\lesssim 0.05 \%$
- In-house calibration gas prep
  - Accuracy <20 ppm absolute</li>
- GC response dependent on
  - Sample composition
  - Sample size (optimized)
  - GC oven program
  - Integration method (improved!)
  - Calibration formula (improved!)

$$\begin{split} \hat{n}_{\rm CO_2} \cdot k &= A_{\rm CO_2} + (A_{\rm CO_2})^{c_1} + (A_{\rm CO_2})^{c_2} ,\\ \hat{n}_{\rm O_2} \cdot k &= c_3 \cdot \left( A_{\rm O_2} + (A_{\rm O_2})^{c_4} + (A_{\rm O_2})^{c_5} \right) ,\\ \hat{y}_{\rm CO_2, cal} &= \frac{\hat{n}_{\rm CO_2}}{\hat{n}_{\rm CO_2} + \hat{n}_{\rm O_2}} , \end{split}$$







The impact of the quality of CO, on transport and storage behav

0

**()** SINTEF



11

### Phase equilibria CO<sub>2</sub>-O<sub>2</sub> (~0 °C)





## Critical region measurements: CO<sub>2</sub>-O<sub>2</sub>

- Using the bellows to tune pressure
- Scaling law regression to estimate the mixture critical point

$$z_{\text{CO}_2} = \hat{z}_{\text{CO}_2,\text{c}} + \left(\lambda_1 - \epsilon \frac{\lambda_2}{2}\right) \left(\hat{p}_{\text{c}} - p\right) - \epsilon \frac{\mu}{2} \left(\hat{p}_{\text{c}} - p\right)^{\beta}$$

 Overall fit using PR-MC-WS-NRTL represent data fairly well







## **Conclusions - General**

- Good thermodynamic models are absolutely neccessary for robust and efficient CCS process design
- Models must be built by fitting binary interaction parameters to experimental data
- IMPACTS have worked together with the CO2Mix project to produce high quality phase equilibrium measurements

## **Conclusions** $- CO_2 - O_2$

- The data situation of this important binary system was poor
- 6 accurate isotherms from -55 to +25 °C have been measured
- The critical composition / pressure has been determined at each temperature
- Deviations with existing models have been found
- System is ripe for model improvements.

#### Acknowledgements

This publication has been produced with support from the research program CLIMIT and the BIGCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Gassco, Shell, Statoil, TOTAL, Engie, and the Research Council of Norway (193816/S60 and 200005/S60).

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7-ENERGY-20121-1-2STAGE) under grant agreement n° 308809 (The IMPACTS project). The authors acknowledge the project partners and the following funding partners for their contributions: Statoil Petroleum AS, Lundin Norway AS, Gas Natural Fenosa, MAN Diesel & Turbo SE, and Vattenfall AB.