The impact of equations of state and impurities on simulation of decompression of CO₂ pipelines

<u>Halvor Lund</u>, Eskil Aursand, Peder Aursand, Morten Hammer SINTEF Energy Research, Trondheim, Norway 2015-12-17

Motivation

Decompression/depressurization can occur due to

- Planned maintenance or shutdown
- Accidental rupture
- Necessary to predict
 - Low temperatures
 - Saturation/bubble pressure

Running ductile fracture

Running ductile fracture

Crucial factor: the saturation pressure

Two-phase flow model

Conservation equations:

Mass:
$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0$$
,
Momentum: $\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} = -$ friction,
Energy: $\frac{\partial E}{\partial t} + \frac{\partial (u[E + p])}{\partial x} =$ heat from pipe.

 $p, T = \text{Thermodynamics}(\rho, E, \text{equation of state})$

Isentropic decompression

Assume

- No friction
- No heat from pipe
- Infinitely long pipe

Gives *isentropic decompression*, given simply by

$$\frac{\mathrm{d}|u|}{\mathrm{d}p} = -\frac{1}{\rho c}.$$

Equations of state

Equation of state (EOS) relates temperature, pressure, density, etc.

We compare two EOSs:

- Peng-Robinson (simple cubic EOS)
- EOSCG-GERG: combination of
 - EOS-CG, developed at RUB (for CO₂, N₂, O₂, Ar)
 - GERG-2008 (for H₂, CH₄, C₂H₆)

Decompression case

Compositions

- Binary mixtures: N₂, O₂, H₂, Ar, CH₄, C₂H₆
- CCS relevant mixtures:

Description	CO ₂	N ₂	0 ₂	Ar	H_2	CH_4	C_2H_6
Coal, amine	99.77%	2000	200	100			
Coal, selexol	98.25%	6000		500	1%	1000	
NG, amine	95%	5000				4%	5000
(ppm or %)							

Impact of equation of state

amine capture

Impact of equation of state

Decompression of CO₂ mixture from natural gas processing with amine capture

Impact of impurities

Saturation pressure

Choke temperature

Summary

- EOS has little impact on depressurisation simulations
- Impurities have a large impact on saturation pressure
- Impurities have little impact on lowest temperature
- Less than ≈1000 ppm is insignificant

Acknowledgment

The research has received funding from the European Community's Seventh Framework Programme (FP7-ENERGY-20121-1-2STAGE) under grant agreement no. 308809 (The IMPACTS project). The authors acknowledge the project partners and the following funding partners for their contributions: Statoil Petroleum AS, Lundin Norway AS, Gas Natural Fenosa, MAN Diesel & Turbo SE and Vattenfall AB.

