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Transportation and injection into geological formations of large 

amounts of CO2 requires compression of captured stream to 

dense-phase or supercritical states 

P > Pcr= 73 bar 

P (1km) = 100 bar 

CO2 compression in CCS 
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CCS is expensive technology due to high costs of CO2 purification 
and compression processes. 
 
• Moore et al (2008) showed that for a pulverized coal-fired 

power plant the CO2 compression penalty is ca 8-12% 
 

• Aspelund and Jordal (2007) have shown the compression costs 
increasing with the N2 content in CO2 stream 

 
Balancing the purification and compression costs requires 
analysis of the power requirements  for compression of impure 
CO2 streams 

CO2 compression costs 

Moore JJ, Nored MG (2008) Novel concepts for the compression of large volumes of 
carbon dioxide. In: Proceedings of ASME turbo expo 2008 
 
Aspelund, A., Jordal, K. (2007) Gas conditioning--The interface between CO2 capture 
and transport. International Journal of Greenhouse Gas Control 2007, 1 (3), 343-354 4 
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Apply the thermodynamic 

analysis method to evaluate 

the impact of impurities on 

compression and identify 

compression schemes with the 

minimal power requirements 

Objectives 
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Pipeline transportation/ 
Storage 

Compression of captured/ 
purified CO2 

Vapour 

Liquid 

Super-critical 
fluid 

P = 90 – 200 bar 
T = 0 – 60 oC 
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CO2 compression schemes 
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Compression and 

refrigeration pumping 

Witkowski, A., et al., 2013. Comprehensive analysis of pipeline transportation systems for CO2 

sequestration. Thermodynamics and safety problems. Energy Conversion and Management 

76, 665-673. 

8-stage centrifugal 

compressor with inter-cooling 
Ramgen’s shockwave axial 

compressor  

MAN Turbo 

netl.doe.gov 

The study is based on the process data for industrial compressors 

from the literature 
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CO2 compression schemes 
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Vapour 

Liquid 

CO2QUEST  

Gas compression 

followed by 

liquefaction  +  

liquid pumping 

Conventional multi-

stage gas compression 

centrifugal compressors 

Shock-wave 

turbo-

compressors 
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CO2 compression schemes 
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• CO2 stream compositions and capture 
conditions 

• Thermodynamic properties relevant for 
compression power analysis 
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Impure CO2 streams 
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  Oxy-fuel 
Pre- 

combustion 

Post- 

combustion 
  Raw/ 

dehumidified 

Double 

flashing 

Distillation 

CO2 (% v/v) 85.0 96.70 99.30 98.07 99.8 

O2 (% v/v) 4.70 1.20 0.40 - 0.015 

N2 (% v/v) 5.80 1.60 0.20 0.02 0.045  (N2+Ar) 

Ar (% v/v) 4.47 0.40 0.10 0.018 

NOx(ppmv)  100 150 33 - 20 

SO2 (ppmv) 50 36 37 700 10 

SO3(ppmv) 20 - - - - 

H2O(ppmv) 100 - - 150 100 

CO (ppmv) 50 - - 1300 10 

H2S (ppmv) - - - 1700 - 

H2 (ppmv) - - - 15000 - 

CH4(ppmv) - - - 110 - 

Compositions of impure CO2 streams 

Porter, R. T. J., Fairweather, M., Pourkashanian, M. & Woolley, R. M. 2015. The range and level of 
impurities in CO2 streams from different carbon capture sources. Int. J. of Greenhouse Gas Control, 
36, 161-174. 

Importantly,  dehydration process require ca 4.8 bar, while second flash use 10-30 bar 

10 



CO2QUEST  

Methodology  

The multistage compression is modelled as a sequence of:     

  -  idealised isentropic compression steps, and 

  -  isobaric cooling steps 

 

 

 

 

 

 

 

Cooling/ refrigeration power is not covered by the analysis 
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Compression power 

The power consumed in the  N-stage compression: 
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  c,i  is isentropic efficiency. 

G  is the mass flowrate of CO2 stream, 

  hin  and hout are enthalpies of the stream at the 
suction and discharge (evaluated using an equation 
of state), 

 where 
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Inter-stage cooling 
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 Cooling duty per stage  
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Conditions after compression:  liquid CO2 @ 151 bar, 38oC 
 

CO2 stream flow rate:  G = 156.4 kg/s  

     representative of a coal-burning 900 MW power plant 
 

 

  Oxy-fuel 
Pre- 

combustion 
Pure CO2 

  
Raw/ 

dehumidified 

Double 
flashing 

Distillation 

CO2  (% v/v) 85.0 96.70 99.30 98.07 100 

Initial pressure 

(bar) 
15 15 15 15 1.5 

Option Compression technology 

A Conventional centrifugal compressors 

B Advanced supersonic shockwave compression 

C Compression + liquefaction +pumping 

Compression of impure CO2 streams 
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Thermodynamic paths for compression of pure and oxy-fule CO2 streams.  

Pout=151 bar, Tin = 38 oC, η=80%, Pr=1.78 

A: multistage centrifugal compression 
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CO2QUEST  B: Ramgen shockwave compression 
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Thermodynamic paths for compression of pure and oxy-fule CO2 streams.  

Pout=151 bar, Tin = 38 oC, η=80%, Pr=1.78 
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Boundaries of VLE region in pressure-temperature phase diagram for pure CO2, pre-
combustion, post-combustion and oxy-fuel streams calculated using Peng-Robinson EoS. 
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C: Compression + subcritical  
     liquefaction and  pumping 
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Thermodynamic paths for compression of CO2 streams of various purity.  

Pout=151 bar, Tout = vary, η=80%, Pr=1.6 

C: Compression + subcritical  
     liquefaction and  pumping 
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Option Compression technology 

A Conventional centrifugal compressors 

B Supersonic shockwave compression 

C Compression + refrigeration and pumping 
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Advantage 

Recoverable heat 
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Inter-stage cooling duty 

Option Compression technology 

A Conventional centrifugal compressors 

B Supersonic shockwave compression 

C Compression + refrigeration and pumping 
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Discussion and recommendations 

Multistage compression has large cooling duty, ca 100 kWh/tCO2 
as compared to ca 50 kWh/tCO2 of compression power 

 

The heat rejected by CO2 stream cooled from 90 – 280 oC to 38oC 
can possibly utilised in the power generation (preheating 
reboiler streams) and solvent regeneration, e.g. amine solvent 
regeneration in post-combustion plant requires ca 1 MWh/tCO2 

 

Quantitative analysis of efficiency of the heat integration 
schemes and amount of heat dissipated to the environment is 
needed 

 
21 



CO2QUEST  

Discussion and recommendations 

For CO2 streams carrying less than 5% impurities, multistage 
compression combined with liquefaction and subsequent 
pumping from ca 62.5 bar pressures can potentially offer higher 
efficiency than conventional gas-phase compression.  

 

Compared with pure CO2, streams carrying more than 5% non-
condensables (like single-flash dehydrated oxy-fuel CO2 stream): 

• require ca 10% more compression power 

• the intercooling and refrigeration power demands increase 
significantly, by ca 45%. Refrigeration system can either utilise 
part of CO2 stream or a cryogenic coolant. 
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