

Impact of impurities in CO₂ streams on compression strategies for Carbon Capture and Sequestration

S.B. Martynov, N.K. Daud , S. Brown, R.T.J. Porter and H. Mahgerefteh

Department of Chemical Engineering, University College London, London WC1E7JE, U.K.

2nd International Forum on Recent Developments of CCS Implementation 16th – 17th December 2015

St. George Lycabettus Hotel, Athens, Greece

Structure

- Background
- Objectives
- Methodology
- Results and discussion

CO₂ compression in CCS

Transportation and injection into geological formations of **large amounts** of CO₂ requires compression of captured stream to dense-phase or supercritical states

CO₂ compression costs

CCS is expensive technology due to high costs of CO₂ purification and compression processes.

- Moore et al (2008) showed that for a pulverized coal-fired power plant the CO₂ compression penalty is ca 8-12%
- Aspelund and Jordal (2007) have shown the compression costs increasing with the N₂ content in CO₂ stream

Balancing the purification and compression costs requires analysis of the power requirements for compression of impure CO₂ streams

Moore JJ, Nored MG (2008) Novel concepts for the compression of large volumes of carbon dioxide. In: Proceedings of ASME turbo expo 2008

Aspelund, A., Jordal, K. (2007) Gas conditioning--The interface between CO2 capture and transport. International Journal of Greenhouse Gas Control 2007, 1 (3), 343-354

CO₂QUEST

Objectives

Apply *the thermodynamic analysis method* to evaluate the impact of impurities on compression and identify compression schemes with the minimal power requirements

CO₂ compression schemes

Carbon Dioxide: Pressure - Enthalpy Diagram

CO₂ compression schemes

The study is based on the process data for industrial compressors from the literature

8-stage centrifugal compressor with inter-cooling

MAN Turbo

Ramgen's shockwave axial compressor

CO₂QUEST

netl.doe.gov

Witkowski, A., *et al.*, 2013. Comprehensive analysis of pipeline transportation systems for CO₂ sequestration. Thermodynamics and safety problems. Energy Conversion and Management 76, 665-673.

CO₂ compression schemes

Carbon Dioxide: Pressure - Enthalpy Diagram

CO₂QUEST⁸

Impure CO₂ streams

- CO₂ stream compositions and capture conditions
- Thermodynamic properties relevant for compression power analysis

CO₂QUEST Compositions of impure CO₂ streams

	Oxy-fuel			Dro	Dest
	Raw/	Double	Distillation	Pre-	POSI-
	dehumidified	flashing		compustion	compussion
CO ₂ (% v/v)	85.0	96.70	99.30	98.07	99.8
O ₂ (% v/v)	4.70	1.20	0.40	-	0.015
N ₂ (% v/v)	5.80	1.60	0.20	0.02	0.045 (N ₂ +Ar)
Ar (% v/v)	4.47	0.40	0.10	0.018	
NO _x (ppmv)	100	150	33	-	20
SO ₂ (ppmv)	50	36	37	700	10
SO ₃ (ppmv)	20	-	-	-	-
H ₂ O(ppmv)	100	-	-	150	100
CO (ppmv)	50	-	-	1300	10
H ₂ S (ppmv)	-	-	-	1700	-
H ₂ (ppmv)	-	-	-	15000	-
CH ₄ (ppmv)	-	-	-	110	-

Importantly, dehydration process require ca 4.8 bar, while second flash use 10-30 bar

Porter, R. T. J., Fairweather, M., Pourkashanian, M. & Woolley, R. M. 2015. The range and level of impurities in CO₂ streams from different carbon capture sources. *Int. J. of Greenhouse Gas Control*, 36, 161-174.

Methodology

The multistage compression is modelled as a sequence of:

- idealised isentropic compression steps, and
- isobaric cooling steps

Cooling/ refrigeration power is not covered by the analysis

Compression power

The power consumed in the N-stage compression:

$$W_C = \sum_{i=1}^N \frac{G}{\eta_{c,i}} \left(h_i^{out} - h_i^{in} \right)$$

where

 h^{in} and h^{out} are enthalpies of the stream at the suction and discharge (evaluated using an equation of state),

- $G\,$ is the mass flow rate of $\rm CO_2\, stream,$
- $\eta_{c,i}$ is isentropic efficiency.

Inter-stage cooling

Cooling duty per stage

Compression of impure CO₂ streams

	Oxy-fuel			Dro-	
	Raw/ dehumidified	Double flashing	Distillation	combustion	Pure CO ₂
CO ₂ (% v/v)	85.0	96.70	99.30	98.07	100
Initial pressure (bar)	15	15	15	15	1.5

Conditions after compression: liquid CO₂ @ 151 bar, 38°C

CO_2 stream flow rate: G = 156.4 kg/s

representative of a coal-burning 900 MW power plant

Option	Compression technology
Α	Conventional centrifugal compressors
В	Advanced supersonic shockwave compression
С	Compression + liquefaction +pumping

A: multistage centrifugal compression CO₂QUEST

Thermodynamic paths for compression of pure and oxy-fule CO₂ streams. Pout=151 bar, Tin = 38 °C, η =80%, Pr=1.78

B: Ramgen shockwave compression

Thermodynamic paths for compression of pure and oxy-fule CO₂ streams. Pout=151 bar, Tin = 38 °C, η =80%, Pr=1.78

C: Compression + subcritical liquefaction and pumping

Boundaries of VLE region in pressure-temperature phase diagram for pure CO2, precombustion, post-combustion and oxy-fuel streams calculated using Peng-Robinson EoS.

C: Compression + subcritical liquefaction and pumping

CO₂QUEST

18

Thermodynamic paths for compression of CO_2 streams of various purity. Pout=151 bar, Tout = vary, η =80%, Pr=1.6

Pressure (bar)

Compression power demand

CO2 content in feed (% v/v)

Option	Compression technology
А	Conventional centrifugal compressors
В	Supersonic shockwave compression
С	Compression + refrigeration and pumping

Inter-stage cooling duty

CO2 content in feed (% v/v)

Option	Compression technology
Α	Conventional centrifugal compressors
В	Supersonic shockwave compression
С	Compression + refrigeration and pumping

Discussion and recommendations

Multistage compression has large **cooling duty**, *ca* 100 kWh/t_{CO2} as compared to *ca* 50 kWh/t_{CO2} of compression power

The heat rejected by CO_2 stream cooled from 90 – 280 °C to 38°C can possibly utilised in the power generation (preheating reboiler streams) and solvent regeneration, *e.g. amine solvent regeneration in post-combustion plant requires ca* 1 *MWh/t_{CO2}*

Quantitative analysis of efficiency of the heat integration schemes and amount of heat dissipated to the environment is needed

Discussion and recommendations

For CO₂ streams carrying less than 5% impurities, multistage compression <u>combined with liquefaction</u> and subsequent pumping from *ca* 62.5 bar pressures can potentially offer higher efficiency than *conventional gas-phase compression*.

Compared with pure CO_2 , streams carrying more than 5% noncondensables (like single-flash dehydrated oxy-fuel CO_2 stream):

- require *ca* 10% more compression power
- the intercooling and refrigeration power demands increase significantly, by ca 45%. Refrigeration system can either utilise part of CO₂ stream or a cryogenic coolant.

References

- IEAGHG 2011. Technical specifications: Impact of CO₂ impurity on CO₂ compression, liquefaction and transportation (IEA/Con/13/213).
- WITKOWSKI, A., RUSIN, A., MAJKUT, M., RULIK, S. & STOLECKA, K. 2013. Comprehensive analysis of pipeline transportation systems for CO₂ sequestration. Thermodynamics and safety problems. Energy Conversion and Management, 76, 665-673.
- PENG, D.-Y. & ROBINSON, D. B. 1976. A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15, 59-63.
- PORTER, R. T. J., FAIRWEATHER, M., POURKASHANIAN, M. & WOOLLEY, R. M. 2015. The range and level of impurities in CO₂ streams from different carbon capture sources. International Journal of Greenhouse Gas Control, 36, 161-174.

Acknowledgements and Disclaimer

• The research leading to the results described in this presentation has received funding from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102.

 The presentation reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained therein.