

IMPACTS TOOLBOX

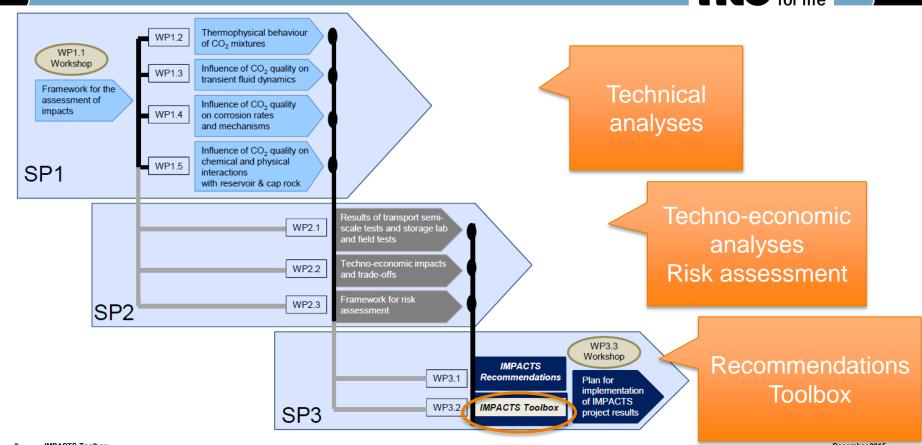
IMPACTS Technical Knowledge Base

IMPACTS Toolbox

Collection of the primary results of the IMPACTS project:

- a) Changes in fundamental properties of CO₂ stream due to impurities
- b) Operational and material impacts of CO₂ impurities

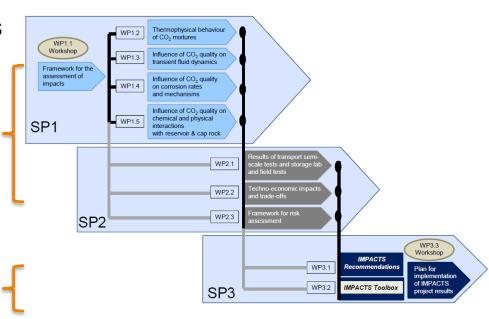
IMPACTS Recommendations


Secondary results of the IMPACTS project- Recommendations and guidelines derived from the assessed changes in CO₂ stream properties and impacts of impurities on transport and storage

This presentation

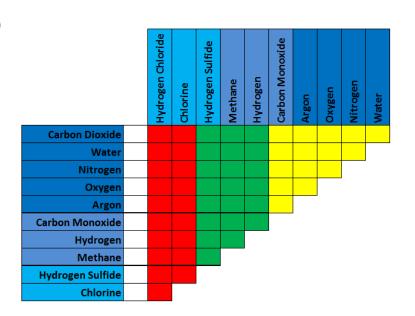
Previous presentation

IMPACTS Toolbox


December 2015

IMPACTS TOOLBOX

- Objective
 - Provide results, tools, models from IMPACTS project to public
 - Cover all areas of IMPACTS research
 - Mixture properties
 - Fluid flow, transport
 - Corrosion
 - Storage
 - Techno-economic assessment of CO₂ mixtures in the CCS chain
 - Risk analysis
 - Include recommendations from IMPACTS



TOOLBOX HIGHLIGHTS TREND 2.0

- > TREND 2.0
 - Model for thermodynamic properties of CO₂ rich mixtures
 - Excel tool provided as interface
- See presentation by Roland Span, Thursday 17th, 12:30

Covered by EOS-CG (as published in *Gernert and Span*, 2015)

Covered by adapted GERG-2008 models (see *Kunz and Wagner*, 2012)

Covered by new models optained by combination rules

of new equations of state for the pure fluids

TOOLBOX HIGHLIGHTS CO₂ PURITY

Reference data for CO₂ purity (next slide)

TYPICAL IMPURITY LEVELS

BEFORE (LEFT), **AFTER** COMPRESSION (RIGHT)

CO2 source	Capture process	#s	Р	Т	CO2 min	H2O	N2	O2	Ar	NOx	SOx	#s	Р	Т	CO2 min	H2O	N2	02	Ar	NOx	SO
Coal-fired power plant	CO2/N2 separation	11	40	50	94.0%	6.0%	2500	200	300	100	10	12	200	70	99.0%	1500	2500	300	300	100	20
Coal-fired power plant	CO2/HC separation	2	0	0	95.6%	1400	300		500			8	200	51	95.0%	1600	9000	1	1100	10	10
Coal-fired power plant	O2/N2 separation	11	1	100	70.0%	15.2%	15.0%	12.0%	6000	2500	1.5%	13	153	70	83.6%	500	12.6%	4.7%	5000	2500	2.5
Gas-fired power plant	CO2/N2 separation	1	2	21	98.6%	1.4%						2	153	51	99.9%		100	100			
Gas-fired power plant	O2/N2 separation	1	1	10	70.1%	4800	19.3%	6.3%	3.9%			1	120	36	97.3%		1.6%	7100	3900		
Cement & lime production	CO2/N2 separation	1	1		99.8%	640	890	35	11			0									
Cement & lime production	O2/N2 separation	1	1	15	83.0%	1.0%	10.9%	3.5%	1.5%			0									
Steel & Iron production	CO2/HC separation	5			86.5%	6.0%	4.1%					0									
Refineries	CO2/N2 separation	1	1		99.6%	640	2900	120	38	3	1	0									
Refineries	CO2/HC separation	2	2	35	95.0%	4.0%	60		50			1			100.0%	400					
(S)NG processing	CO2/HC separation	4	2	35	95.0%	1.2%	30	5				8	150	24	95.0%	1200	4.0%	10			
Overall	Overall	40	40	100	70.0%	15.2%	19.3%	12.0%	6.0%	2500	1.5%	45	200	70	83.6%	1600	12.6%	4.7%	5.0%	2500	2.

WORST COMBINATIONS

- Six combinations that produce the highest levels of impurities
 -) [CO₂] above 95%
- Water content not included
 - Defined by customer, not by capture process
- Desulphurisation included

CO ₂ source Capture technology	Coal-fired power plant Amine-based absorption	Coal-fired power plant Ammonia-based absorption	Coal-fired power plant Selexol-based absorption	Coal-fired power plant Oxyfuel combustion	Natural gas processing Amine-based absorption	Synthesis gas processing Rectisol-based absorption	
CO ₂	99.8%	99.8%	98.2%	95.3%	95.0%	96.7%	
N ₂	2000	2000	6000	2.5%	5000	30	
O ₂	200	200	1	1.6%		5	
Ar	100	100	500	6000			
NO _x	50	50		100			
SO _x	10	10		100			
СО	10	10	400	50		1000	
H ₂ S			100		200	9000	
H ₂			1.0%			500	
CH ₄			1000		4.0%	7000	
C ₂ +					5000	1.5%	
NH ₃	1	100					
Amine	1						

Post

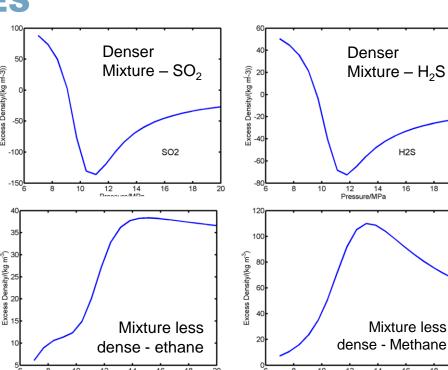
Post

Pre

Оху

Amine

Amine

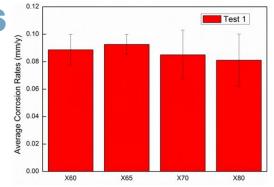

H2S

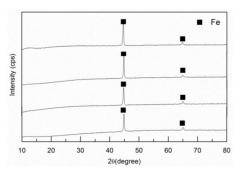
TOOLBOX HIGHLIGHTS CO₂ MIXTURE PROPERTIES

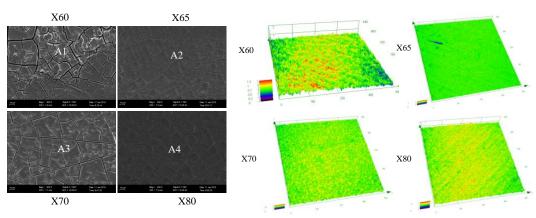
Insights into effects of various impurities on mixture properties. Example: density

Effect on density

-) 'Excess density' curves show change in density of mixture when 10% impurity is added
- Positive values (for ethane, methane) indicate decreasing density of mixture
- Negative value (SO₂, H₂S) indicate that adding these to the CO₂ *increases* the density
 - Smaller compressors...
 - Larger storage capacity...







TOOLBOX HIGHLIGHTS CORROSION

- Examples of results from corrosion experiments
 - This examples shows corrosion rates for several steel grades
 - Link to detailed report provided

IMPACTS Toolbox

TOOLBOX HIGHLIGHTS STORAGE CAPACITY

- Example shows effect mixture properties on storage capacity
 - Several real (!) mixtures
 - > Effects can be significant

Depth (m)	Coal-fired	power station	on	Coal-fired	power station	on	Coal-fired power station					
reservoir		sed adsorpt			oustion amr		Selexol based adsorption					
V	Oil field			Aquifer			Oil field					
	Storage ca	apacity (Mt)		Storage ca	apacity (Mt))	Storage capacity (Mt)					
	Pure	Mixture	Diff (%)	Pure	Mixture	Diff (%)	Pure	Mixture	Diff (%)			
800	6.0	4.1	-32	14.1	13.9	-1	6.0	3.5	-42			
900	5.8	5.1	-12	15.9	15.7	-1	5.8	4.5	-22			
2000	5.8	5.7	-2	34.4	34.2	-1	5.8	5.6	-4			
3400	4.8	4.8	0	57.0	56.8	0	4.8	4.7	-2			
	Coal-fired	powerstatio	n Oxyfuel	Natural ga	s processir	ng Amine	Synthetic gas processing					
	Aquifer			Chalk oil f	ield		Oil field					
	Storage ca	apacity (Mt)		Storage ca	apacity (Mt))	Storage capacity (Mt)					
	Pure	Mixture	Diff (%)	Pure	Mixture	Diff (%)	Pure	Mixture	Diff (%)			
800	14.1	7.8	-45	6.0	3.1	-48	6.0	3.5	-42			
900	15.9	11.0	-31	5.8	3.2	-45	5.8	4.4	-24			
2000	34.4	30.7	-11	5.8	5.3	-9	5.8	5.5	-5 -2			
3400	57.0	52.5	-8	4.8	4.6	-4	4.8	4.7	-2			
	Cement Industry				njection (+5°	% SO ₂)						
	Aquifer			Aquifer								
	Storage ca	apacity (Mt)		Storage ca	apacity (Mt))						
	Pure	Mixture	Diff (%)	Pure	Mixture	Diff (%)						
800	14.1	4.3	-70	14.1	13.6	-4						
900	15.9	5.6	-65	15.9	15.2	-4						
2000	34.4	22.4	-35	34.4	32.2	-7						
0.400	57.0	42.0		57.0	53.0	-7	I					

WRAP-UP

- IMPACTS Toolbox
 - Provides overview of IMPACTS results, tools, recommendations, ...
 - Quick introduction into areas covered by IMPACTS project
 - Provides links to IMPACTS reports on each topic or highlight
- Implementation: pdf file
 - Internal links between research areas
 - External links to IMPACTS reports, for details and background
- Available on IMPACTS website coming soon!
 - <u>www.sintef.no/projectweb/impacts</u>

CO₂? RISKY?

