Modeling solid – fluid equilibria with application to CO₂ mixtures

Ilias K. Nikolaidis^{1,2}, Georgios C. Boulougouris^{1,3}, Dimitrios M. Tsangaris¹, Loukas D. Peristeras¹, Ioannis G. Economou^{1,2}

¹National Center for Scientific Research "Demokritos", Molecular Thermodynamics and Modeling of Materials Laboratory, Aghia Paraskevi, Greece ²Texas A&M University at Qatar, Chemical Engineering Program, Doha, Qatar ³Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupoli, Greece

2nd International Forum on Recent Developments of CCS Implementation 17 December 2015

Athens, Greece

Objectives

- Objectives
 - Pure CO₂ and multicomponent CO₂ mixtures thermodynamic modeling.
 - Multiphase equilibrium calculations with explicit account of solid phases.
 - Coupling of different solid models with various fluid EoS.
 - Development of efficient algorithms capable of handling multiple phases.

Equations of State for Fluids

Soave – Redlich – Kwong (SRK) EoS:

$$P = \frac{RT}{v-b} - \frac{a(T)}{v(v+b)}$$

Peng – Robinson (PR) EoS:

$$P = \frac{RT}{v-b} - \frac{a(T)}{v(v+b) + b(v-b)}$$

□ PC-SAFT EoS:

$$\frac{A^{\text{res}}(T,\rho)}{\text{NRT}} = \frac{a^{\text{hs}}(T,\rho)}{\text{RT}} + \frac{a^{\text{disp}}(T,\rho)}{\text{RT}} + \frac{a^{\text{chain}}(T,\rho)}{\text{RT}}$$
$$+ \frac{a^{\text{assoc}}(T,\rho)}{\text{RT}}$$

Extension to mixtures

$$a = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j a_{ij}$$
$$b = \sum_{i=1}^{n} x_i b_i$$
$$a_{ij} = \sqrt{a_i a_j} (1 - k_{ij})$$

$$\begin{split} \overline{m} &= \sum_{i} x_{i} m_{i} \\ \epsilon_{ij} &= \sqrt{\epsilon_{i} \epsilon_{j}} (1 - k_{ij}) \\ \sigma_{ij} &= \frac{\sigma_{i} + \sigma_{j}}{2} \\ \overline{m^{2} \epsilon \sigma^{3}} &= \sum_{i} \sum_{j} x_{i} x_{j} m_{i} m_{j} \left[\frac{\epsilon_{ij}}{kT} \right] \sigma_{ij}^{3} \end{split}$$

Vapor – liquid phase equilibria (kij \neq 0)

Vapor – liquid phase equilibria (kij ≠ 0)

Motivation for developing solid models

- Hazard assessment studies associated with CO₂ transport include scenarios of accidental release through pipeline ruptures.
- Pipeline depressurization results in rapid cooling and subsequent solid – gas discharge.
- CFD modeling of the rapid expansion process and near field dispersion needs to take into account the solidification phenomena.

Woolley et al., Int. J. Greenhouse Gas Control, 2014;27:221-238.

Correlation model for mixtures

Solid – fluid equilibrium → Equation of chemical potentials at the same temperature and pressure.
 The ideal gas reference state is used for both phases:
 µ^S_i(T, P) = µ^F_i(T, P, x^F)

 $\hat{f}_i^{S}(T, P) = \hat{f}_i^{F}(T, P, \mathbf{x}^{F})$

 $P_{0i}^{sat}(T)\widehat{\varphi}_{0i}^{sat}(T, P_{0i}^{sat}) \exp\left[\frac{v_{0i}^{S}}{RT}\left(P - P_{0i}^{sat}(T)\right)\right] = x_{i}^{F}\widehat{\varphi}_{i}^{F}(T, P, \mathbf{x}^{F})P$

Solution at constant temperature and pressure:

$$\mathbf{x}_{i}^{\mathrm{F}^{(k+1)}} = \frac{\widehat{\varphi}_{i0}^{\mathrm{sat}}(\mathrm{T}, \mathrm{P}_{0i}^{\mathrm{sat}})\mathrm{P}_{0i}^{\mathrm{sat}}(\mathrm{T})}{\mathrm{P}\widehat{\varphi}_{i}^{\mathrm{F}}(\mathrm{T}, \mathrm{P}, \mathbf{x}^{\mathrm{F}^{(k)}})} \exp\left[\frac{\nu_{0i}^{\mathrm{S}}}{\mathrm{RT}}(\mathrm{P} - \mathrm{P}_{0i}^{\mathrm{sat}}(\mathrm{T}))\right]$$

Thermodynamic Integration model for mixtures

$$\mu_{i}^{S}(T, P) = \mu_{i}^{F}(T, P, \mathbf{x}^{F})$$

$$\mu_{i}^{S}(T, P) = \mu_{0i}^{S}(T, P) + RTln \frac{x_{i}^{S} \varphi_{i}^{S}(T, P, \mathbf{x}^{S})P}{\varphi_{0i}^{S}(T, P)P}$$

$$\mu_{i}^{F}(T, P, \mathbf{x}^{F}) = \mu_{0i}^{F^{*}}(T, P) + RTln \frac{x_{i}^{F} \varphi_{i}^{F}(T, P, \mathbf{x}^{F})P}{\varphi_{0i}^{F^{*}}(T, P)P}$$

$$solid \qquad subcooled melt$$

$$x_{i}^{F} = \frac{x_{i}^{S} \varphi_{0i}^{S}}{\varphi_{0i}^{S}} \cdot \frac{\varphi_{0i}^{F^{*}}}{\varphi_{i}^{F}} \cdot \exp\left[-\frac{1}{RT}\left(\mu_{0i}^{F^{*}}(T, P) - \mu_{0i}^{S}(T, P)\right)\right]$$

$$x_{i}^{L} = \frac{\varphi_{0i}^{L^{*}}}{\varphi_{i}^{L}} \cdot \exp\left[-\frac{\left(v_{0i}^{S}\right) - \left(v_{0i}^{L}\right)\left(P^{+} - P\right)}{RT} - \frac{\left(h_{0i}^{SL}\right)}{RT}\left(1 - \frac{T}{T_{0i}^{SL}}\right) + \frac{\left(Ac_{P,0i}^{SL}\right)}{RT}\left(T_{0i}^{SL} - T\right) - \frac{Ac_{P,0i}^{SL^{*}}}{R}\ln\frac{T_{0i}^{SL}}{T}\right]$$

Seiler et al., Chemical Engineering & Technology. 2001;24:607-612.

Jager and Span solid EoS for pure CO₂

Empirical Gibbs free energy equation:

$$\begin{split} \frac{g}{RT_0} &= g_0 + g_1 \Delta \vartheta + g_2 \Delta \vartheta^2 + g_3 \left\{ \ln\left(\frac{\vartheta^2 + g_4^2}{1 + g_4^2}\right) - \frac{2\vartheta}{g_4} \left[\arctan\left(\frac{\vartheta}{g_4}\right) - \arctan\left(\frac{1}{g_4}\right) \right] \right\} \\ &+ g_5 \left\{ \ln\left(\frac{\vartheta^2 + g_6^2}{1 + g_6^2}\right) - \frac{2\vartheta}{g_6} \left[\arctan\left(\frac{\vartheta}{g_6}\right) - \arctan\left(\frac{1}{g_6}\right) \right] \right\} \\ &+ g_7 \Delta \pi \left[e^{f_\alpha(\vartheta)} + K(\vartheta)g_8 \right] + g_9 K(\vartheta) \left[(\pi + g_{10})^{(n-1)/n} - (1 + g_{10})^{(n-1)/n} \right] \end{split}$$

Parameters g₀ and g₁ are adjusted for every fluid EoS used:

 $\Delta h^{\text{melt}} = h^{\text{sol}}(T_{\text{tr}}, P_{\text{tr}}) - h^{\text{liq}}(T_{\text{tr}}, P_{\text{tr}}) \quad s^{\text{sol}}(T_{\text{tr}}, P_{\text{tr}}) = s^{\text{liq}}(T_{\text{tr}}, P_{\text{tr}}) - \frac{\Delta h^{\text{melt}}}{T_{\text{tr}}}$

□ Calculation of saturation pressure is done with the Clausius – Clapeyron equation: Jäger and Span, J. Chem. Eng. Data, 2012;57:590-597. $\frac{dP}{dT}\Big|_{equil} = \frac{\Delta H}{T\Delta V}$

Pure solid CO₂ SVE and SLE

$CO_2 - N_2$ SVE and SLE Solid model comparison

$CO_2 - N_2$ SVE and SLE Fluid EoS comparison

Solid – Liquid - Gas equilibrium

- □ Any solid model can be used.
- Basic equation that holds:

 $\mu_i^{S}(T, P) = \mu_i^{l}(T, P, \mathbf{x}^{l}) = \mu_i^{v}(T, P, \mathbf{y}^{v})$

This leads to satisfaction of two independent equations:

 $\mu_i^l \big(T, P, \mathbf{x}^l \big) = \mu_i^v (T, P, \mathbf{y}^v) \quad \text{and} \qquad \mu_i^S (T, P) = \mu_i^l \big(T, P, \mathbf{x}^l \big)$

 $\mu_i^l\big(T,\mathsf{P},\boldsymbol{x}^l\big)=\mu_i^v(T,\mathsf{P},\boldsymbol{y}^v) \quad \text{and} \qquad \mu_i^S(T,\mathsf{P})=\mu_i^v(T,\mathsf{P},\boldsymbol{y}^v)$

$CO_2 - N_2$ SLGE

$CO_2 - H_2$ SLGE

$CO_2 - CH_4$ SLGE (1)

$CO_2 - CH_4$ SLGE (2)

CO2 - CH1, Correlation model correlations exp. Davis et al. exp. Donnely and Katz Pure CO₂ triple point Pressure (MPa) SRK 3 PR PC-SAFT 2 1 0 140 160 180 200 220 120 100 Temperature (K)

kij values taken from: Diamantonis et al. Industrial & Engineering Chemistry Research. 2013;52:3933-3942.

SRK: 0.103 PR: 0.100 PC-SAFT: 0.061

SLGE modeling results

- Excellent agreement between experimental data and modeling results with all models.
- $\Box CO_2 N_2$ mixture
 - Most accurate predictions: Thermodynamic integration PR.
 - Most accurate correlations: Jager and Span PC-SAFT.
- \Box CO₂ H₂ mixture
 - Most accurate predictions: Correlation (DIPPR) SRK.
 - Most accurate correlations: Jager and Span PC-SAFT.
- \Box CO₂ CH₄ mixture
 - Most accurate predictions: Thermodynamic integration SRK.
 - Most accurate correlations: Thermodynamic integration PR.

CO₂ – CH₄, LG and SLG projections

SLGE of other mixtures

Conclusions

- Solid models of variable complexity have been coupled with different fluid EoS; Efficient algorithms for multiphase equilibria calculations have been developed.
- Differences between the models are more pronounced in solid – liquid calculations, especially at high pressures.
- The models' accuracy has been validated against SLG experimental data available in the literature for many different mixtures.
- Excellent agreement between experimental data and modeling results for all mixtures.

Acknowledgment and Disclaimer

The research leading to the results described in this presentation has received funding from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102 (CO_2QUEST project).

The presentation reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained therein.

Consistency of solid – fluid models

