

CO₂QUEST

CO₂ Purity from Different Carbon Capture Applications and Associated Cost and Performance

M Fairweather¹, C Kolster², N MacDowell²,

RTJ Porter³, N Shah² and RM Woolley¹

¹University of Leeds, Leeds, LS2 9JT, UK

²Imperial College London, London, SW7 1NA, UK

³University College London, London, WC1E 7JE, UK

16th-17th December 2015, Athens, Greece

Objectives

**** * * ***

Develop an understanding of the dependence of capture cost on the required purity level.

Perform scenario-based cost analysis with respect to impurities removal for the three main capture technologies:

Oxyfuel combustion

- Compression and dehydration only
- Double flash case
- Distillation
- Pre-combustion
 - Selexol and Rectisol solvents
 - Co-capture: CO₂ and H₂S are captured together in the same stream
 - Separate capture: CO₂ and H₂S are separated and processed
- Post-combustion
 - With and without conventional pollution control devices

Method

Techno-economic modelling using IECM – fossil fuel power plant cost and performance calculator.

+ wider literature survey and assumptions for unavailable cases

Aspen HYSYS[®] was used to compute technical parameters of oxyfuel CO₂ compression and purification unit scenarios.

Coal Selection

,*	*	**	
÷	*	*	

	Appl. Low Sulfur	
Rank	Bituminous	
HHV (kJ/kg)	30420	
Carbon (wt %)	71.74	
Hydrogen (wt %)	4.62	
Oxygen (wt %)	6.09	
Chlorine (wt %)	0.07	
Sulfur (wt %)	0.64	
Nitrogen (wt %)	1.42	
Ash (wt %)	9.79	
Moisture (wt %)	5.63	
Cost (€/tonne) ^a	53.19	

^a Currency: 2014 €

Oxyfuel CO₂ Compression and Purification Unit Aspen Hysys Modelling

□ CO₂ Compression and Dehydration only

3-stage Pre-compression train

Oxyfuel CO₂ Compression and Purification Unit Aspen Hysys Modelling

Oxyfuel CO₂ Compression and Purification Unit Aspen Hysys Modelling

Oxyfuel combustion capture scenarios

	Compression and dehydration only	Double flash	Distillation
Gross power output (MW_e)	400	400	400
CO ₂ capture efficiency (%)	100	92	90
CO ₂ product stream (Mt/year)	2.88	2.25	2.16
CO ₂ purification unit energy (kWh/tonneCO ₂)	103	150	172
Net power output (MW)	310	270.6	265.8
Net plant efficiency, HHV(%)	33.81	29.51	28.99
Capacity factor (%)	96.5	96.5	96.5
Fixed charge factor (%)	17.21	17.21	17.21

 Supercritical boiler; electrostatic precipitator particulate control system and wet FGD system SOx removal units (85% removal efficiency) are included.

Pre-combustion Integrated Gasification Combined Cycle

Pre-combustion Integrated Gasification Combined Cycle

□ SelexolTM solvent process with separate capture of sulfur species and CO₂

Ordorica-Garcia, G., Douglas P., Croiset, E., and Zheng, L., Technoeconomic Evaluation of IGCC Power Plants for CO₂ Avoidance, Energ. Convers. Manage. 47, 2250-2259, 2006.

Pre-combustion Integrated Gasification Combined Cycle

□ Selexol^m solvent process with co-capture of sulfur species and CO₂

Ordorica-Garcia, G., Douglas P., Croiset, E., and Zheng, L., Technoeconomic Evaluation of IGCC Power Plants for CO₂ Avoidance, Energ. Convers. Manage. 47, 2250-2259, 2006.

Pre-combustion capture scenarios

	Selexol™ co- capture*	Selexol™ separate capture*,**	Rectisol [®] separate capture ^{*,**}
Gross power output (MW_e)	343.3	343.3	343.3
CO ₂ capture efficiency (%)	95	95	95
CO ₂ captured (kg/MWh)	806.7	885.3	916.3
Net power output (MW)	295.2	268.7	259.6
Net plant efficiency, HHV(%)	33.83	30.78	29.73
Capacity factor (%)	96.5	96.5	96.5
Fixed charge factor (%)	17.21	17.21	17.21

* Based on GE quench gasifier (1+1 spare), 1 GE 7FB gas turbine.

*,** 98% sulfur removal efficiency via hydrolyser and physical solvent system; sulfur recovery via Claus and Beavon-Stretford plants.

Post-combustion capture scenarios

	ESP particulate control only*	With NOx control by LNB/SCR and SO ₂ control by wet-FGD **
Gross power output (MW $_{\rm e}$)	400	400
CO ₂ capture efficiency (%)	90	90
CO ₂ captured (kg/MWh)	1078	1094
Net power output (MW)	321.6	313.8
Net plant efficiency, HHV(%)	25.95	25.66
Capacity factor (%)	96.5	96.5
Fixed charge factor (%)	17.21	17.21

* Supercritical boiler; electrostatic precipitator particulate control system included.

** Supercritical boiler; electrostatic precipitator particulate control system, infurnace NO_x controls, hot-side SCR and wet FGD SO₂ control included.

Total capital costs

Total O&M costs

* * * * * * *

TCC = Total capital cost (€)

FCF = Fixed charge factor (fraction)

FOM = Fixed operating & maintenance costs (€/yr)

VOM = Variable O&M costs, excluding fuel costs (€/MWh)

HR = Power plant heat rate (MJ/MWh)

FC = Unit fuel cost (€/MJ)

CF = Annual average capacity factor (fraction)

MW = Net power plant capacity (MW)

Cost of Electricity vs. CO₂ Purity

17

(constant 2014 €)

Concluding remarks

- Lowest cost technology is pre-combustion capture using the Selexol[™] physical solvent with co-capture of impurities technology (97.64 mol% CO₂, 3794 ppm_v H₂S, 1.7 mol% H₂, 0.2 mol% CO...)
- Highest estimated cost technology is pre-combustion capture using Rectisol[®] solvent and with separate capture of sulfur impurities. (99.51 mol% CO₂, 1.5 ppm_v H₂S, 0.295 mol% H₂, 0.07 mol% CO...)
- Highest purity technologies jointly oxyfuel-distillation and post-combustion capture with LNB SCR and FGD (99.99 mol% CO₂) with the latter being cheaper.
- Other factors may also affect cost and also CO₂ product purity, including coal selection, retrofit versus new build, and mode of operation of the power plant.
- Gas fired power-plants are likely to produce high purity CO₂ cheaply

**** * * ***

The research leading to the results described in this presentation has received funding from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102

The presentation reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained therein

