CO₂QUEST

Reactive transport simulations of an impure CO₂ flue gas injection into a saline aquifer on a 2D reservoir scale

D. Rebscher, L. Wolf, J. Bensabat, A. Niemi

Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)www.bgr.deUppsala Universitetwww.uu.seEnvironmental and Water Resources Engineering Ltd. (EWRE)www.ewre.com

2nd International Forum on Recent Developments of CCS Implementation

16. – 17. December, Athens, Greece

CO₂QUEST

Impact of the Quality of CO₂ on Storage and Transport

effect of typical impurities in the CO₂ stream captured from fossil fuel power plants

- safe and economic transportation
- deep geologic storage

CO₂QUEST

Impact of the Quality of CO₂ on Storage and Transport

effect of typical impurities in the CO₂ stream captured from fossil fuel power plants

safe and economic transportation

To obtain an understanding of the effects of impurities on the performance of the geological storage operation, in terms of fluid/rock interactions and leakage of trace elements by means of:

- 1. field injection tests of CO₂ with impurities (Heletz, Israel and Catenoy, France)
- 2. laboratory experiments to determine the impact of the impurities on the mechanical properties of the reservoir and the caprock
- 3. extensive model development and application to enhance the understanding of CO_2 geological storage performance in the presence of impurities

To obtain an understanding of the effects of impurities on the performance of the geological storage operation, in terms of fluid/rock interactions and leakage of trace elements by means of:

- 1. field injection tests of CO₂ with impurities (Heletz, Israel and Catenoy, France)
- 2. laboratory experiments to determine the impact of the impurities on the mechanical properties of the reservoir and the caprock
- 3. extensive model development and application to enhance the understanding of CO_2 geological storage performance in the presence of impurities

impact of non-condensible gases

- changing physical properties of CO₂ mobility, density, wettability
 - \rightarrow injectivity

use of pore space \rightarrow smaller storage volume for CO₂

physics

reservoir

initial

primary minerals	fraction		
carbonates			
ankerite CaFe0.7Mg0.3(CO3)2	3.7 %		
feldspars			
K-feldspar KAlSi3O8	12 %		
albite NaAlSi3O8	3.9%		
clay minerals			
illite K0.85Al2.85Si3.15O10(OH)2	3.9 %		
kaolinite Al ₂ Si ₂ O ₅ (OH) ₄	3.2 %		
chlinochlore-7a Mg5Al2Si3O10(OH)8	1.4 %		
sulfur minerals			
pyrite FeS ₂	2.1 %		
anhydrite CaSO4	0.4 %		
oxide mineral			
quartz SiO ₂	69.35 %		
iron mineral			
goethite FeOOH	0.05 %		

secondary minerals

carbonates calcite CaCO₃ siderite FeCO₃

iron mineral hematite Fe₂O₃

injection

 $CO_2 + SO_2$

CO₂ + **SO**₂

layer	height [m]	porosity [%]	horizontal permeability [mD]	vertical permeability [mD]	quartz [%]	feldspar [%]	clay minerals [%]	carbonates [%]	other minerals [%]
caprock	2	9.5	0.1	0.1	3	50	35	8	4
sandstone	2	21.3	700	100	70	16	8	4	2
shale	3	9.5	0.1	0.1	3	50	35	8	4
sandstone	9	15.6	700	100	70	16	8	4	2

x = 40 m

gas saturation Sg

TOUGHREACT V3-OMP, ECO2N

gas saturation Sg

gas saturation Sg

CO₂ plume

x < 60 m dry out zone

x < 400 m influence of nearly whole sandy layer

x = 2500 m maximum distance, lowest sandstone layer,

just below shale

gas saturation Sg

SO₂ (gas)

SO₂ (gas)

рΗ

ankerite dissolved

anhydrite precipitates

as ankerite dissolves anhydrite precipitates

porosity

porosity

initial values

Δporosity

change of porosity

calcium ion Ca²⁺

anhydrite CaSO₄

mobile phases

solid phases

SO₂ influences pH value

15

height z [m]

00

pH value dissolves ankerite

ankerite CaFe_{0.7}Mg_{0.3}CO₃)₂

anhydrite CaSO₄

sulfate + calcium leads to anhydrite precipitation

height z [m] 2

forming anhydrite removes free Ca²⁺

Fe²⁺ is 2nd reacting system

adds complexity

complexity

complex interplay

- multiphase, multicomponent transport
- chemical reactivity
- residence time
- flow pattern

reservoir scale

reservoir scale

reactive transport

pН

CO₂ influence

pН

disclaimer

The research leading to the results described in this presentation has received funding from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102.

The presentation reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained therein.

Sg + P