CO₂QUEST

Imperial College

COORAL

Comparison of different numerical and modelling approaches for implementing SO_2 as a CO_2 flue gas impurity in geochemical simulations in saline sandstone aquifers

- J. L. Wolf, S. Fischer, S. Waldmann, H. Rütters, A. Niemi,
- J. Bensabat, F. May, and D. Rebscher *

Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)www.bgr.deUppsala Universitetwww.uu.seEnvironmental and Water Resources Engineering Ltd. (EWRE)www.ewre.com2nd International Forum on Recent Developments of CCS Implementation16. – 17. December, Athens, Greece

CO₂ purity for separation and storage

CO₂-Reinheit für die Abscheidung und Lagerung

www.bgr.bund.de/COORAL

CO₂ purity for separation and storage

optimization of the process chain production – transport – injection – geological storage

what is the optimal composition of the CO₂ stream?

laboratory experiments, numerical modelling

CO₂ purity for separation and storage

optimization of the process chain production – transport – injection – geological storage

what is the optimal composition of the CO₂ stream?

laboratory experiments, numerical modelling

Impact of the Quality of CO₂ on Storage and Transport

Impact of the Quality of CO₂ on Storage and Transport

effect of typical impurities in the CO₂ stream captured from fossil fuel power plants

- safe and economic transportation
 - deep geologic storage

Imperial College

laboratory + field experiments, numerical modelling

Impact of the Quality of CO₂ on Storage and Transport

effect of typical impurities in the CO₂ stream captured from fossil fuel power plants

safe and economic transportation

deep geologic storage

laboratory + field experiments, numerical modelling

COORAL + CO2QUEST

**** * * ***

two comparisons

- I Heletz sandstone, Israel Rotliegend sandstone, Germany Bunter sandstone, Germany
- II basic geochemical batch simulations PHREEQC reactive transport simulations – TOUGHREACT time/spatial info

same measured and calculated data set of Heletz as used before i.e. mineral composition, in situ pT, formation water chemistry

base model	porosity [%]	p [MPa]	т [°С]	s []	brine	quartz [%]	clay minerals [%]	feldspars [%]	carbonates [%]	others [%]
Bunter	20	15.0	55	0.231	NaCl	63	6	16	9	6
Rotliegend	10	32.0	90	0.250	NaCl	63	9	11	10	7
Heletz	20	14.7	66	0.055	NaCl	69	9	16	4	2

batch simulation PHREEQC V3

constant volume of the impure CO_2 stream 1 % SO_2

initial parameter

*	* *
*	*
*	*
*	*
*	* *

base model	porosity [%]	p [MPa]	т [°С]	s []	brine	quartz [%]	clay minerals [%]	feldspars [%]	carbonates [%]	others [%]
Bunter	20	15.0	55	0.231	NaCl	<mark>6</mark> 3	6	16	9	6
Rotliegend	10	32.0	90	0.250	NaCl	63	9	11	10	7
Heletz	20	14.7	66	0.055	NaCl	69	9	16	4	2

batch simulation PHREEQC V3

constant volume of the impure CO_2 stream 1 % SO_2

Ca²⁺

Ca²⁺

quasi stationary equilibrium of fast reacting minerals

calcite CaCO₃

anhydrite CaSO₄

precipitates dissolves precipitates

calcium precipitation from slow reacting feldspars

dolomite CaMg(CO₃)₂ (CaCO₃·MgCO₃))

Ca²⁺

short-term establishing equilibrium of fast reacting minerals

long-term transformation of feldspars to carbonates

reactive transport Bunter

1D radial reactive transport spatial profile

TOUGHREACT OMP-3.0 ECO2N impure CO₂ stream 9 kg/s, 1 % SO₂

minerals

reactive transport Bunter

minerals

range of SO_2 impact < 75 m CO_2 impact > 75 m

reactive transport

base model	porosity [%]	p [MPa]	т [°С]	s []	brine	quartz [%]	clay minerals [%]	feldspars [%]	carbonates [%]	others [%]
Bunter	20	15.0	55	0.231	NaCl	63	6	16	9	6
Rotliegend	10	32.0	90	0.250	NaCl	63	9	11	10	7
Heletz	20	14.7	66	0.055	NaCl	69	9	16	4	2

reactive transport

	*
barameters	*
	^* * *

base model	porosity [%]	p [MPa]	т [°С]	s []	brine	quartz [%]	clay minerals [%]	feldspars [%]	carbonates [%]	others [%]
Bunter	20	15.0	55	0.231	NaCl	63	6	16	9	6
Rotliegend	10	32.0	90	0.250	NaCl	63	9	11	10	7
Heletz	20	14.7	66	0.055	NaCl	69	9	16	4	2

reactive transport Heletz

minerals

1D radial reactive transport spatial profile

reactive transport Heletz

minerals

range of SO_2 impact < 115 m CO_2 impact > 115 m

reactive transport Heletz

minerals

minerals

Bunter

high carbonates, i.e. calcite $CaCO_3$ and dolomite $CaMg(CO_3)_2$ almost complete dissolution

precipitation as anhydrite CaSO₄

minerals

Bunter

high carbonates, i.e. calcite $CaCO_3$ and dolomite $CaMg(CO_3)_2$ almost complete dissolution

precipitation as anhydrite CaSO₄

molar volume CaCO337 cm³/molCaMg(CO3)264 cm³/molCaSO446 cm³/mol

decrease in porosity

Bunter

high carbonates, i.e. calcite $CaCO_3$ and dolomite $CaMg(CO_3)_2$ almost complete dissolution

minerals

after 10 years, injected SO₂ used up within 75 m

Heletz

less and different carbonates,

more rock volume needed to use SO₂

larger dry out zone

after 10 years, injected SO₂ used up within 115 m

minerals

*** * * ***

Heletz

less and different carbonates,

i.e. ankerite $CaFe_{0.7} Mg_{0.3} (CO_3)_2$ and dolomite $CaMg(CO_3)_2$ almost complete dissolution

less Ca²⁺ in ankerite than in calcite CaCO₃

less precipitation as anhydrite CaSO₄

increase in porosity

reactive transport

reactive transport

conclusion

conclusion

PHREEQC and TOUGHREACT, complements

preferential dissoluton of SO_2 compared to CO_2 together with high reactivity with carbonates \rightarrow spatial separation

amount and species of carbonates

→ determine porosity

other minerals play minor part

outlook

end of CO₂QUEST 6/2016

3rd sandstone Rotliegend

disclaimer

The research leading to the results described in this presentation has received funding from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102 and from the German Federal Ministry for Economic Affairs and Energy.

The presentation reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained therein.

