

IOLICAP Project Results

Novel IOnic LI quid and supported ionic liquid solvents for reversible CAP ture of $\mathrm{CO}_2\text{-}\mathit{IOLICAP}$

Institute Nanoscience Nanotechnology Ινστιτούτο Νανοεπιστήμης Νανοτεχνολογίας

George Romanos

Institute for Nanoscience and Nanotechnology National Center for Scientific Research "Demokritos"

4 major lines of Research

Introduction of the Partners

Introduction of the Partners

Ionic Liquids

What are Ionic Liquids?

"Ionic Liquids is the generic term for a class of materials, consisting entirely of ions and being liquid below 100°C."

"If they are liquid at room temperature, we call them (RTILs)."

- Weak coordinating tendency of the ion pair.
- Low intermolecular interaction.
- Breaking the symmetry of its chemical structure.

Generations of cations and anions

ILs are now about 100 years old, when ethylammonium nitrate was found to be liquid under ambient conditions.

Properties

Very good solvents properties for a wide variety of organic, inorganic and organometallic compounds

- High thermal and chemical stability
 - High electrical conductivity
 - Low vapor pressure
 - Large electrochemical window
- Fine-tuning the structure, these properties can be tailordesigned
 - > High solubility of gases especially CO_2

Applications

PROCESS TECHNOLOGY **Biomass Conversion** Gas-Separation Metal-Extraction Liquid-Liquid-Extraction

FUNCTIONAL FLUIDS & ADDITIVES **Hydraulic Oils** Additives Lubricants Surfactants

SYNTHESIS & CATALYSIS

Enzymatic Reactions Immobilization of Catalysts (SILP) Nanoparticle-Synthesis **Organic Synthesis**

STATUS:

R&D Pilot Commercialized

IONIC LIQUIDS PROPERTIES

- Liquid over a Wide T-Range
- -Thermal Stability
- Electrochemical Stability
- Low Vapor Pressure
- Non Volatility
- Non Inflammability
- Electric Conducting
- Tunable Miscibility

HEAT TRANSPORT & CONVERSION Thermal Fluids Phase Changing Materials (PCM) Sorption Cooling Media

ELECTROCHEMISTRY

Fuel Cells Metal Deposition & Electropolishing Batteries DSSCs Electrochromic Windows Sensors Supercaps

They can be used as solvents for CO_2 capture?

Disadvantages compared to amines

Viscosity @ RT – 15-500cP Physisorption---CO₂ absorption capacity < 0.05 mol/mol at 1 bar Binary CO₂/IL diffusivity – 10⁻¹¹ to 10⁻⁹ m²/sec Cost – 100-200€ at the 100kg level

n

CI⁻

AH MO KD

Alkylation Reaction

+ Na C(CN)₃ $\xrightarrow{\text{CH}_2\text{CH}_2}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{N}}$

Very good solvents properties for a wide variety of organic, inorganic and organometallic compounds.

One way to reduce the cost

Have the impurities any effect on the properties of interest?

CO₂ Solubility? N

Binary CO₂/IL diffusivity? N

High Scale production at low cost

Iolitec Company used a continuous flow microreactor technology to synthesise 200 kg of the most promising ILs for CO₂ capture at a cost of 100 € per kg.

TCM-based ILs

1-ethyl-3-methylimidazolium tricyanomethanide

1-butyl-3-methylimidazolium tricyanomethanide

1-hexyl-3-methylimidazolium tricyanomethanide

1-octyl-3-methylimidazolium tricyanomethanide

Lactam-based ILs

pyrrolidium-2-one trifluoroacetate

pyrrolidium-2-one bis(trifluoromethylsulfonyl)imide

ΞN

1-ethyl-3-methylimidazolium lysinate

1-ethyl-3-methylimidazolium serinate

Acetate and Phosphate anions

1-ethyl-3-methylimidazolium diethylphosphate

1-ethyl-3-methylimidazolium acetate

Effect of water on the CO₂ solubility and diffusivity of ILs with the gravimetric technique

Effect of water on the CO₂ solubility of ILs

 $[C_nC_1im][C(CN)_3]-H_2O-CO_2$

interaction

more CO₂ molecules absorbed

Effect of water on the CO₂ diffusivity of ILs

Is this enough? Perform tests in a scrubbing/stripping device

ILs could not compete with amines Slow capture kinetics the major problem

Use them in mixture with amines. Try to reduce amine content.

A mixture consisting of 7% DEA, 6.9% MDEA and 7% ILs had the same efficiency with the 20% DEA solution

Less Corrosive for Mild Steel

7% DEA, 6.9% MDEA

7% DEA, 6.9% MDEA and 7% ILs

attack severely the surface of mild steel, leading to dissolution of metal over the entire surface and significant weight loss corrosion inhibition effect of the ILs through the adsorption on the metal surface and blocking active sites surrounding MnS inclusions

Raman analysis-Detection of corrosion products

Less Toxic

MDC (g/L) MIC (g/L)

As a way to confront the problems of High Viscosity @ RT – 15-500cP \Rightarrow Binary CO₂/IL diffusivity – 10⁻¹¹ to 10⁻⁹ m²/sec

Cost – 100-200€ at the 100kg level

- Confinement enhances CO₂capture performance.
- Overcomes diffusion limitations-Very thin film.
- Cost- Less quantity of IL

Membranes = Supported Ionic Liquid Membranes (SILMs) – (70%)

Catalysts = Supported Ionic Liquid Catalysts (SILCs) - (25%)

Adsorbents = Supported Ionic Liquid Phase Adsorbents (SILPs) – (5%)

Ionogels-different from SILPs

 H_3C

lonogels Sol-gel.

Ionic liquids act as:

- drying control chemical additives
- catalysts
- structure directing agents
- solvents (or cosolvents)

1-ethyl-3-methyl-imidazolium acetate [EMIM] [AC] as structure directing agent

Using porous substrates and membranes

Case A – Thin film on the pore walls

At

Case B – Complete pore filling

Case C – Thin film on the pore mouth

Ceramic Ultrafiltration and Nanofiltration membranes

С

100.000

Challenges

-It is difficult to find porous supports with the required pore size

-The surface of the porous solid must be negatively charged

Case D – Alternative method - Grafting

Temperature °C

Very versatile technique-Different anions

AH

Comparison Grafted vs Case B

Comparison Grafted vs Case B

time (minutes)

Innovation - Dry liquid. Tiny droplets of IL (<1µm) covered by nanoparticles of pyrogenic silica

- ✓ Easily upscalable development
- ✓ Phase inversion from silica nanoparticles suspension in a methanolic solution of the lonic Liquid.
- ✓ By controllable evaporation of methanol we achieve phase inversion with the hydrophilic nanoparticles covering the droplets of IL.

Morphology of Inverse SILPs

Novelty- Use an lonogel of Chitosan with the IL

Images from SEM

Silica nanoparticles

Inverse SILP

Optic Microscope

Performance of Inverse SILPs

٩ł

Very fast kinetics

Characteristic numbers for Ionic Liquids

# of predicted permutations of ions	10 ¹⁸
# of liquid materials	1012 (?)
# of materials with interesting properties:	~ 10.000
# produced by companies on lab scale today:	~ 500
# procuded on lab scale in future:	~ 1500
# of materials produced on industrial scale today	<mark>5-10</mark>
# produced on industrial scale in future:	25 (?)
# of materials described in literature today	> 2000
# of materials synthesized in our own labs	> 700
# of suifficiently characterized materials	~ 20

AH

pubs.acs.org/CR

Gas Solubility in Ionic Liquids

Zhigang Lei, Chengna Dai, and Biaohua Chen*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 266, Beijing, 100029, China dx.doi.org/10.1021/cr300497a1 Chem. Rev. 2014, 114, 1289

CO₂ - 120 ILs

 N_2 -10 ILs

 SO_2 - 20 ILs

 H_2S - 16 ILs

 $N_2O - 11 ILs$

Ionic Liquids in gas separation

Demonstration: Budget 350k€ 5000Nm³/h

Power Plant

Flue Gas desulfurisation Plant

Power Plant

Thank you for your attention !!!!

AH Me

