I2nd International Forum on recent Developments of CCS Implementation 16th-17th December 2015, Athens Greece

Techno-Economic Evaluation on the Effects of Impurities for Conditioning and Transport of CO₂ by Pipeline

Geir Skaugen, SINTEF ER Simon Roussanaly, SINTEF ER

Introduction – Content of presentation

- The effect of impurities on the thermodynamic properties of CO₂ relevant for case studies
- Description case study –compressed gas for pipeline transport
- Effect of impurities on;
 - Pipeline design
 - Energy consumption
 - Cost
- Conclusion

Effects of impurities on CO₂ thermodynamic

Effect of 2% N₂

Effects of impurities on density (predictions)

Effects of impurities on viscosity (predictions)

Pipeline transport of CO₂

Pipeline transport of CO₂

Cases, impurity levels and boundary conditions

CASE	CO ₂	H ₂ O	N ₂	02	Methane
«BASE»	93	7			
«OXY»	88	7	3	2	
«GAS»	83	7	1		9

Maximum impurity levels

Initial condition: Atmospheric (1.027 bar and 25°C) Export condition: 150 bar (35-38 °C) Ambient temperature 15°C with low heat transfer:

- Ground thermal conductivity: 2.4 W/m K
- Ambient heat transfer: 5.0 W/m²K

Total transport distance: 500 km

Pipeline: On-shore @ depth 1.0 m, varying diameter

Feed flow rate: 500 kg/s (13.1 MTPA)

Pipeline transport – conditioning

Feed after capture

To pipeline

Pipeline transport – conditioning

Power consumption for conditioning before export

Power comsumption for conditioning for export

Effects from inpurity on pipe design

Question: "Will a crack in the pipeline, when initiated, propagate or will it stop? Known as "Running Ductile Fractures" – or RDF and "crack arrest"

Fracture propagation and pipe design

Question: "Will a crack in the pipeline, when initiated, propagate or will it stop? Known as "Running Ductile Fractures" – or RDF and "crack arrest"

Fracture propagation and pipe design

Question: "Will a crack in the pipeline, when initiated, propagate or will it stop? Known as "Running Ductile Fractures" – or RDF and "crack arrest"

CO₂ phase behaviour – rapid pressure release – isentropic

CO₂ phase behaviour with precence of impurities

—CO2 —"GAS" —"OXY" —4%H2 / 1% N2

CO₂ phase behaviour with precence of impurities

CO₂ pipeline operational envelope (Pressure – Entropy)

SMYS and RDF – how does impurities come into the eq.

SMYS – «Specified Maximum Yield Strength»

Wall thickness, t, determined from design pressure, $\rm P_D$, yield strength, $\sigma_{\rm o}$ and safety factor, f

$$t = \frac{P_D \cdot R_0}{\sigma_0} \cdot \frac{1}{f}$$

RDF – «Running Ductile Pressure»

Link between the «saturation pressure» and «arrest pressure»

Very simplified: $p_{sat} < p_{arrest}$ then RDF will not occur and a crack will not propagate

$$p_{a} = \frac{2 \cdot t \cdot \tilde{\sigma}}{3.33\pi R_{o}} \cdot \cos^{-1} \left[e^{\left(\frac{\pi R_{f} E}{24\tilde{\sigma}^{2}\sqrt{R_{o} \cdot t}}\right)} \right]$$
From the "Batalle Two-Curve Model"

SMYS and RDF – Effect of impurities on wall thickness

SMYS and RDF – Effect of impurities in a 24" pipeline

SMYS and RDF – how does impurities come into the eq.

SMYS and RDF – how does impurities come into the eq.

Pipeline sizes used in the analysis

Based on DNV-GL recommendations – CLASS 3 pipeline: (SMYS_{0.45}+ 1.0 mm) + 12.5%

Size	Outside diameter	Wall thickness	Inside diameter
	(mm)	(mm)	(mm)
28"	711.2	30.2	681.0
24"	609.6	28.6	581.0
20"	508.0	23.8	484.2
18"	457.2	22.2	435.0

Based on DNV-GL recommendations – CLASS 3 pipeline: (SMYS_{0.45}+ 1.0 mm) + 12.5%

Size	Outside diameter	Wall thickness	Inside diameter
	(mm)	(mm)	(mm)
28"	711.2	30.2	681.0
24"	609.6	28.6	581.0
20"	508.0	23.8	484.2
18"	457.2	22.2	435.0

Possible path for pipeline pressure loss – principle

Power consumption 500 km for on-shore pipeline transport

Power consumption 500 km for on-shore pipeline transport

Pressure profile for pipeline transport

Temperature profile along a 24" pipeline

MIXTURE: 95.7% CO2, 0.1% H2O, 3.2% N2, 1.1%O2

1200

1000

Required pumping power for pipeline transport

24" Pipeline with 4 booster stations - "pumping power"

CO₂ conditioning cost of the BASE, OXY and GAS cases, €/tCO₂

CO₂ transport cost of the BASE, OXY and GAS cases, €/tCO₂

CO₂ conditioning and transport cost

Optimum pipeline diameter

24" pipeline diameter

Summary and conclusions

- Pipeline transport of CO₂ over 500 km
 - The results show that with 4% impurities from N₂ and O₂, the transport power consumption in a 24" pipeline configuration can increase by 100%
 - to boundary conditions and need to be optimized on a case to case basis
 - The most important thermodynamic property is the <u>density</u>.
- Pipe design
 - It was shown how the cricondenbar for the transported fluid, combined with the possible operational envelope for the transport and the material properties for the pipeline should be used when evaluating the potential for RDF
- Economics:
 - The results showed a cost increase of 8.5% annually for conditioning and transporting CO₂ with impurities in a pipeline optimized for pure CO₂

Thank you for your attention!

Acknowledgement: The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7-ENERGY-20121-1-2STAGE) under grant agreement n° 308809 (The IMPACTS project). The authors acknowledge the project partners and the following funding partners for their contributions: Statoil Petroleum AS, Lundin Norway AS, Gas Natural Fenosa, MAN Diesel & Turbo SE and Vattenfall AB.

Technology for a better society

