Predicting the Atmospheric Dispersion of Carbon Dioxide from a Buried Ruptured Pipeline

Jennifer Wen, Hongen Jie and Pierre Le Fur Warwick FIRE, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

The COOLTRANS research programme is funded by National Grid in connection with the Don Valley Power Project which is co-financed by the European Union's European Energy Programme for Recovery. The sole responsibility of this publication lies with the authors. The European Union is not responsible for any use that may be made if the information contained therein.

Outline

- Objectives
- CO₂FOAM
- The test case
- The blind validation
- Further analysis of the predictions
- Concluding remarks

Objectives

Provide further validations of CO_2FOAM , a dedicated solver for CO_2 dispersion in the framework of the open source CFD code OpenFOAM®.

CO₂FOAM

- CO₂FOAM a dedicated solver for CO₂ dispersion in the framework of the open source CFD code OpenFOAM®
- Two options for CO₂ dispersion:
 - The Homogeneous Equilibrium Model (HEM)

Jennifer Wen, Ali Heidari, Baopeng Xu and Hongen Jie, Dispersion of carbon dioxide from vertical vent and horizontal releases—A numerical study, Proc IMechE Part E: J Process Mechanical Engineering 227(2), 125-139, May, 2013.

- The Homogeneous Relaxation Model (HRM)

Jennifer Wen, Ali Heidari, Baopeng Xu and Hongen Jie, Further development and validation of CO₂FOAM for the atmospheric dispersion of accidental releases from carbon dioxide pipelines, under consideration by International Journal of Greenhouse Gas Control, 2015.

CO₂FOAM with HRM

- Mixture equations accounting for all phases.
- A relaxation model is employed to handle the presence of solid CO₂ within the release and its continuing sublimation.
- Buoyancy effects are important and included.
- Unsteady Reynolds Averaged Navier Stokes (RANS) approach.
- k-ω SST turbulence model for Reynolds Stresses.

Test case considered

- Test 02 in Case Study 4 within the series of full scale tests commissioned by National Grid within the dense phase CO₂ PipeLine TRANSportation (COOLTRANS) research programme (Cooper, 2012).
- The test involved the release of dense phase CO₂ from a ruptured buried pipeline.

(Courtesy of National Grid)

Cooper R. National Grid's COOLTRANS research programme. J Pipeline Eng 2012; 11: 155–172.

Boundary conditions

The parameters for the pseudo source of the released CO₂ supplied by DNV-GL

Parameters		Case Study 4 Test 02
Mass Flow CO ₂ Vapour	kg/s	206.7
Mass Flow CO ₂ Condensed	kg/s	86.3
Mass Flow Air	kg/s	174.3
Total Mass Flow	kg/s	467.3
Total Mass Flow CO ₂	kg/s	293.0
Mass fraction of CO ₂ Vapour	%	44.233
Mass fraction of CO ₂	0/	19 /69
Condensed	70	10.400
Representative Crater Source	m/s	44.80
Velocity	11/5	44.80
Representative Crater Source	N/I	2 1/15
Diameter	IVI	2.145
Representative Crater Source	ka/m ³	2 887
Density	Kg/III ²	2.007
Representative Crater Source	K	185 7
Temperature	IX.	100.7

The atmospheric conditions

Parameters	Value	
Field Temperature averaged over 45 measurements	°C	17.7
Relative humidity (average over all test)	%	73
Dew temperature	°C	12.76
Average of wind speed measured at four locations		2.5
Average of wind direction measured at four locations	0	242

The realistic terrain at the test site

Locations of CO₂ concentration measurements

The locations of probes shown on top of the shaded contour of terrain height.

WARWICK *Fire*

The predicted and measured CO₂ concentrations

50 m fromthe CO₂ source

The predicted and measured CO₂ concentrations

100 m from the

CO₂ source

150 m from the CO_2 source

The predicted and measured CO₂ concentrations

Threshold of unconsciousness

Concentration of carbon dioxide (ppm) / % v/v	Responses
45000 / 4.5 %	Reduced concentration capability for more than 8 hours exposure, adaptation possible
55000 / 5.5%	Breathing difficulty, headache and increased heart rate after 1 hour
65000 / 6.5%	Dizziness, and confusion after 15 minutes exposure
70000 / 7.0%	Anxiety caused by breathing difficulty effects becoming severe after 6 minutes exposure
100 000 / 10%	Approaches threshold of unconsciousness in 30 minutes
120 000 / 12%	Threshold of unconsciousness reached in 5 minutes
150 000 / 15%	Exposure limit 1 minutes
200 000 / 20%	Unconsciousness occurs in less than 1 minute

The predicted CO₂ volume fractions

The concentration of CO_2 at probe L12 on Arc 17.5m.

The predicted CO₂ volume fractions

The concentration of CO_2 at probes on Arc 50m (left: upstream; right: (downstream))

WARWICK FIRE

The predicted CO₂ volume fractions

The concentration of CO_2 at probes on Arc 200 m (left) and Arcs 250m and 300m (right).

WARWICK FIRE

The predicted footprint of 5% CO₂ concentration

The stable cloud covers a length of 105m in the wind direction (25m and 80m at the upstream and downstream directions respectively) and a width of 225m in the crosswind direction (110m and 115m at the positive and negative y direction, respectively).

WARWICK **Fire**

The visibility of the CO₂ cloud

The ISO-contour of the CO₂ at the dew temperature

The footprint of CO₂ cloud at 1% volumetric fraction

The footprint of CO_2 cloud at 1.5% volumetric fraction

Dry ice

The predicted solid CO_2 with mass fraction greater than 0.1% after the CO_2 cloud stabilizes.

Ground temperature

The temperature close to the ground after the CO_2 cloud stabilizes at 200 s (Red line: -20°C, Black line: -10°C, White line: 0°C).

WARWICK FIRE

Concluding Remarks

- CO₂FOAM, a dedicated solver for CO₂ dispersion was used to predict the dispersion of CO₂ released from a buried ruptured pipeline <u>before</u> the release of the experimental measurements.
- The predicted CO₂ concentrations are in reasonably good agreement with the data.
- The terrain was found to have some effect on the behaviour of the CO₂ cloud; and the effect is more obvious for large cloud.
- The CO₂ cloud was found to stabilize shortly after the release, and in this particular case it stabilises after 200 s, indicating that the extent of the cloud with potential harmful CO₂ concentrations is limited.
- Solid CO₂ was predicted only close to the source and sublimates rapidly.

